Advanced Probabilistic Couplings for Differential Privacy

Gilles Barthe, Noémie Fong, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, Pierre-Yves Strub

October 25, 2016

A new approach to formulating privacy goals: the risk to one's privacy, or in general, any type of risk . . should not substantially increase as a result of participating in a statistical database.

This is captured by differential privacy.

- Cynthia Dwork

Increasing interest

In research. . .

Google	differential privacy
Scholar	bout 2,860,000 results (0.04 sec
Articles	Differential privacy: A survey of results C Dwork - International Conference on Theory and Applications of ..., 2008 - Springer
Case law My library	Abstract Over the past five years a new approach to privacy-preserving data analysis has born fruit $[13,18,7,19,5,37,35,8,32]$. This approach differs from much (but not all!) of the related literature in the statistics, databases, theory, and cryptography communities, in that ...
	Cited by 2333 Related articles All 32 versions Web of Science: 331 Cite Save More

Increasing interest

In research. .

Case law	lysi
	born fruit [13, 18, $7,19,5,37,35,8,32]$. This approach differs from much (but not all!) of the
My library	related literature in the statistics, databases, theory, and cryptography communities, in that

and beyond

Differential privacy

Dwork, McSherry, Nissim, and Smith

Let $\epsilon, \delta \geq 0$ be parameters, and suppose there is a binary adjacency relation Adj on D. A randomized algorithm $M: D \rightarrow \operatorname{Distr}(R)$ is (ϵ, δ)-differentially private if for every set of outputs $S \subseteq R$ and every pair of adjacent inputs d_{1}, d_{2}, we have

$$
\operatorname{Pr}_{x \sim M\left(d_{1}\right)}[x \in S] \leq \exp (\epsilon) \cdot \operatorname{Pr}_{x \sim M\left(d_{2}\right)}[x \in S]+\delta
$$

Dwork, McSherry, Nissim, and Smith

Let $\epsilon, \delta \geq 0$ be parameters, and suppose there is a binary adjacency relation Adj on D. A randomized algorithm $M: D \rightarrow \operatorname{Distr}(R)$ is (ϵ, δ)-differentially private if for every set of outputs $S \subseteq R$ and every pair of adjacent inputs d_{1}, d_{2}, we have

$$
\operatorname{Pr}_{x \sim M\left(d_{1}\right)}[x \in S] \leq \exp (\epsilon) \cdot \operatorname{Pr}_{x \sim M\left(d_{2}\right)}[x \in S]+\delta
$$

How to formally verify?

Differential privacy is a:

> relational property of probabilistic programs.

Composition properties

DB

(ϵ, δ)
 out

Program is $\left(\epsilon+\epsilon^{\prime}, \delta+\delta^{\prime}\right)$-private

Composition properties

Program is $\left(\epsilon+\epsilon^{\prime}, \delta+\delta^{\prime}\right)$-private

Formally

Consider randomized algorithms $M: D \rightarrow \operatorname{Distr}(R)$ and $M: R \rightarrow D \rightarrow \operatorname{Distr}\left(R^{\prime}\right)$. If M is (ϵ, δ)-private and for every $r \in R, M^{\prime}(r)$ is $\left(\epsilon^{\prime}, \delta^{\prime}\right)$-private, then the composition is $\left(\epsilon+\epsilon^{\prime}, \delta+\delta^{\prime}\right)$-private:
$r \& M(d) ; r e s \& M(r, d) ;$ return $(r e s)$

When privacy follows from composition

When privacy follows from composition

(Linear types, refinement types, self products, relational Hoare logics, ...)

When privacy doesn't follow from composition

Complicated privacy proofs

```
3.1 Privacy Proof for Algorithm I
We now powe de plvayy of AlgacitmII We track the prom
```



```
*)
celow tre Huramila
```



```
    Pr}[A(D)=\mp@subsup{I}{}{M}]\leq\mp@subsup{e}{}{\textrm{IPr}}[A(\mp@subsup{D}{}{\prime})-\mp@subsup{\perp}{}{\prime}
    Proof: We have
    Pr}[A(D)=\mp@subsup{1}{}{\prime}]=\mp@subsup{\int}{-\infty}{\infty}\mp@subsup{f}{~}{(D,x,L)
```



```
        and L-{L,2\cdots,}
The potabivy of oupputing Le mer D is the unnration (or
M,
```



```
lol
```



```
Hea we hwe
Pr[|(D)-\mp@subsup{L}{}{t}]-\mp@subsup{\int}{-\infty}{-}}1/[D,=,L]|
            = = =-\infty-\infty
                            S =-\infty
```



```
Prga(D)+w<\pi+a] - Prlu< <T - w[D) +s]
```



```
Wili(3), we pare (2) us solome
```



```
    =\alphal/_(D,=+\Delta,L).
\square
We caug\mathrm{ buin a similur resukf fox positiee query enwers in the}
```



```
    Pr [A(D)-\mp@subsup{T}{}{*}]\leq\mp@subsup{e}{}{2}Pr[|(D)=-T]
```



```
M,
```



```
    N,
```



```
M,
M,
we doww belax
    Tuluams 2. Ngovimal\ive-DP.
*)
*)
```



```
#mP
```



```
(4)
```



```
M,
```



```
lomen
\,
```



```
~
```


Figure 1: A Sclection of SVT Variants

Algurithm 1 An instatiatiano of the SVT proposed in this paper.
Injut: $D, Q, \Delta \cdot T=T_{1}, T_{2}, \cdots, C$.

Algorithm 2 SVT in Dweok and Roth 2014 [8].
Input: $D, Q, \Delta, T, \epsilon$.

count $=$ ocourt +1 , Abart if count $\geq c$.

count $=$ count +1
celke
Outrut $a_{i}=1$

8. $\begin{array}{c}\text { ese } \\ \text { Outpout } \\ \text { 9. } \\ \text { end } \\ \text { 9. } \\ \text { end for }\end{array}$

end if
end for
Algarihmm 3 SVT in Rolis 2011 Leceare Noks [I5]. \quad Algarithm 4 SVT in Lee
Alzarithm 4 SVT in Lee and Ciifoo 2014 [13].
Input: D, Q, Δ, T, c.

5: if $_{q_{i}(D)+w_{i} \geq}$ Output $a_{c}=T$

${ }^{6 \times}$ \% clownt
count $=$ cours +1
else
Output $a_{8}=1$
$\begin{array}{lc}\text { 7. } & \text { eles } \\ \text { 8: } & \text { Output } a_{4}-\perp \\ 9 & \text { end if }\end{array}$

Algorithm 5 SVT in Stodiard et al. 2014 [18].
Alzorithm 6 SVT in Cben ot al. 2015 [1].

Input: D, Q, Δ, T.
I: $:=\operatorname{lap}(2 \Delta)$

5:	Output
6:	else
7:	else
8:	Ourpur
8:	

else
Ouput $a_{i}-$
end if
end for
$T_{i}+p$ then
9. Oungut a_{i}
10: end for if
$+p$ then
新
?

Figgure 2: Differences among Algorithma 1-6.

- Lyu, Su, Dong

Complicated privacy proofs

Thuoams 2. NgoviminXiseode
 Centy, $\left|t^{2}\right| \leq a$, We have

$$
P\left(|A(D)=0|-\int_{-\infty}^{\infty} s(D, 0) d x, v s m\right.
$$

Because $n=\operatorname{Lop}\left(\frac{\tan }{x}\right)$ and $\operatorname{la}(D)-q\left(D_{0}\right) \mid \leq \Delta$, we hav (4) Proct $\left.(D)+m \geq T_{i}+z\right]-\operatorname{Pr} \mid n \geq T_{1}+z-w(D)$

SPrin $\geq T_{1}+z-\Delta-n\left(D^{\prime}\right)$ (s)

Figure 1: A Sclection of SvT Viriants

- Lyu, Su, Dong

How to verify these proofs?

Recent progress (2016)

Differential privacy \approx Approximate couplings

Recent progress (2016)

Differential privacy \approx Approximate couplings

Approximate couplings \approx Proofs in the logic apRHL

Recent progress (2016)

Differential privacy \approx Approximate couplings

Approximate couplings \approx Proofs in the logic apRHL

Only proofs beyond composition for ($\epsilon, 0$)-privacy

Enhance the logic

New coupling constructions
 New proof rules
 Richer formal proofs of privacy

Our work: formal privacy proofs with:
Accuracy-dependent privacy
Advanced composition
Adaptive inputs

Our work: formal privacy proofs with:

Accuracy-dependent privacy

Advanced composition
Adaptive inputs

A crash course: the program logic apRHL [BKOZB]
Imperative language with random sampling

$$
x \leqslant \mathcal{L}_{\epsilon}(e)
$$

A crash course: the program logic apRHL [BKOZB]
Imperative language with random sampling

$$
x \leqslant \mathcal{L}_{\epsilon}(e)
$$

approximate probabilistic Relational Hoare Logic

$$
\vdash\{\Phi\} \quad c_{1} \sim(\epsilon, \delta) c_{2}\{\Psi\}
$$

A crash course: the program logic apRHL [BKOZB]
Imperative language with random sampling

$$
x \leqslant \mathcal{L}_{\epsilon}(e)
$$

approximate probabilistic Relational Hoare Logic

$\vdash\{\Phi\}$
 c_{1}
 $\sim(\epsilon, \delta) C_{2}$
 $\{\Psi\}$

Non-probablistic, relational $\left(x_{1}=x_{2}\right)$

A crash course: the program logic apRHL [BKOZB]
Imperative language with random sampling

$$
x \leqslant \mathcal{L}_{\epsilon}(e)
$$

approximate probabilistic Relational Hoare Logic

$$
\vdash\{\Phi\} \quad c_{1} \sim(\epsilon, \delta) c_{2}\{\Psi\}
$$

Numeric index

Approximate couplings [BKOZB, BO]

Definition

Let $R \subseteq A \times A$ be a relation and $\epsilon, \delta \geq 0$. Two distributions $\mu_{1}, \mu_{2} \in \operatorname{Distr}(A)$ are related by an (ϵ, δ)-approximate coupling with support R if there exists $\mu_{L}, \mu_{R} \in \operatorname{Distr}(A \times A)$ with:

Approximate couplings [BKOZB, BO]

Definition

Let $R \subseteq A \times A$ be a relation and $\epsilon, \delta \geq 0$. Two distributions $\mu_{1}, \mu_{2} \in \operatorname{Distr}(A)$ are related by an (ϵ, δ)-approximate coupling with support R if there exists $\mu_{L}, \mu_{R} \in \operatorname{Distr}(A \times A)$ with:

- support in R;

Approximate couplings [BKOZB, BO]

Definition

Let $R \subseteq A \times A$ be a relation and $\epsilon, \delta \geq 0$. Two distributions $\mu_{1}, \mu_{2} \in \operatorname{Distr}(A)$ are related by an (ϵ, δ)-approximate coupling with support R if there exists $\mu_{L}, \mu_{R} \in \operatorname{Distr}(A \times A)$ with:

- support in R;
- $\pi_{1}\left(\mu_{L}\right)=\mu_{1}$ and $\pi_{2}\left(\mu_{R}\right)=\mu_{2}$;

Approximate couplings [BKOZB, BO]

Definition

Let $R \subseteq A \times A$ be a relation and $\epsilon, \delta \geq 0$. Two distributions $\mu_{1}, \mu_{2} \in \operatorname{Distr}(A)$ are related by an (ϵ, δ)-approximate coupling with support R if there exists $\mu_{L}, \mu_{R} \in \operatorname{Distr}(A \times A)$ with:

- support in R;
- $\pi_{1}\left(\mu_{L}\right)=\mu_{1}$ and $\pi_{2}\left(\mu_{R}\right)=\mu_{2}$;
- for every $S \subseteq A \times A$,

$$
\operatorname{Pr}_{z \sim \mu_{L}}[z \in S] \leq \exp (\epsilon) \cdot \operatorname{Pr}_{z \sim \mu_{R}}[z \in S]+\delta
$$

Approximate couplings [BKOZB, BO]

Definition

Let $R \subseteq A \times A$ be a relation and $\epsilon, \delta \geq 0$. Two distributions $\mu_{1}, \mu_{2} \in \operatorname{Distr}(A)$ are related by an (ϵ, δ)-approximate coupling with support R if there exists $\mu_{L}, \mu_{R} \in \operatorname{Distr}(A \times A)$ with:

- support in R;
- $\pi_{1}\left(\mu_{L}\right)=\mu_{1}$ and $\pi_{2}\left(\mu_{R}\right)=\mu_{2}$;
- for every $S \subseteq A \times A$,

$$
\operatorname{Pr}_{z \sim \mu_{L}}[z \in S] \leq \exp (\epsilon) \cdot \operatorname{Pr}_{z \sim \mu_{R}}[z \in S]+\delta
$$

Approximate couplings [BKOZB, BO]

Definition

Let $R \subseteq A \times A$ be a relation and $\epsilon, \delta \geq 0$. Two distributions $\mu_{1}, \mu_{2} \in \operatorname{Distr}(A)$ are related by an (ϵ, δ)-approximate coupling with support R if there exists $\mu_{L}, \mu_{R} \in \operatorname{Distr}(A \times A)$ with:

- support in R;
- $\pi_{1}\left(\mu_{L}\right)=\mu_{1}$ and $\pi_{2}\left(\mu_{R}\right)=\mu_{2}$;
- for every $S \subseteq A \times A$,

$$
\operatorname{Pr}_{z \sim \mu_{L}}[z \in S] \leq \exp (\epsilon) \cdot \operatorname{Pr}_{z \sim \mu_{R}}[z \in S]+\delta
$$

Write: $\mu_{1} \quad R_{(\epsilon, \delta)}^{\sharp} \quad \mu_{2}$

Interpreting judgments

$$
\vdash\{\Phi\} \quad c_{1} \sim_{(\epsilon, \delta)} c_{2}\{\Psi\}
$$

Interpreting judgments

$$
\vdash\{\Phi\} \quad c_{1} \sim(\epsilon, \delta) c_{2}\{\Psi\}
$$

Two memories related by Φ

Interpreting judgments

$$
\vdash\{\Phi\} \quad c_{1} \sim_{(\epsilon, \delta)} c_{2}\{\Psi\}
$$

Two memories related by Φ

$$
\Downarrow
$$

Two distributions related by $\Psi_{(\epsilon, \delta)}^{\sharp}$

Differential privacy in apRHL

$\vdash\left\{\operatorname{Adj}\left(d_{1}, d_{2}\right)\right\} \quad c \sim_{(\epsilon, \delta)} \subset \quad\left\{\right.$ res $\left._{1}=\operatorname{res}_{2}\right\}$

Differential privacy in apRHL

$$
\begin{gathered}
\vdash\left\{\operatorname{Adj}\left(d_{1}, d_{2}\right)\right\} \quad \subset \sim_{(\epsilon, \delta)} \subset\left\{\text { res }_{1}=r e s_{2}\right\} \\
(\epsilon, \delta) \text {-differential privacy }
\end{gathered}
$$

Proof rules

Proof rule \approx Recipe to combine couplings

Proof rules

Proof rule \approx Recipe to combine couplings

Sequence rule \approx standard composition of privacy

$$
\operatorname{SEQ} \frac{\vdash\{\Phi\} c_{1} \sim(\epsilon, \delta) c_{2}\{\Psi\} \quad \vdash\{\Psi\} \quad c_{1}^{\prime} \sim\left(\epsilon^{\prime}, \delta^{\prime}\right) c_{2}^{\prime}\{\Theta\}}{\vdash\{\Phi\} c_{1} ; c_{1}^{\prime} \sim\left(\epsilon+c^{\prime} ; \delta+\delta^{\prime}\right) c_{2} ; c_{2}^{\prime}\{\theta\}}
$$

Proof rules

Proof rule \approx Recipe to combine couplings

Sequence rule \approx standard composition of privacy

$$
\operatorname{SEQ} \frac{\vdash\{\Phi\} c_{1} \sim(\epsilon, \delta) c_{2}\{\Psi\} \quad \vdash\{\Psi\} \quad c_{1}^{\prime} \sim\left(\epsilon^{\prime}, \delta^{\prime}\right) c_{2}^{\prime}\{\Theta\}}{\vdash\{\Phi\} c_{1} ; c_{1}^{\prime} \sim\left(\epsilon+\epsilon^{\prime} ; \delta+\delta^{\prime}\right) c_{2} ; c_{2}^{\prime}\{\theta\}}
$$

Our work: formal privacy proofs with:

Accuracy-dependent privacy

Advanced composition
Adaptive inputs

Accuracy-dependent privacy

WARNING!

Bad Event!

Accuracy-dependent privacy

Rough intuition

- Think of δ in (ϵ, δ)-privacy as failure probability
- "Algorithm is private except with small probability δ "
- "If the noise added is not too large, then ..."

Similar to up-to-bad reasoning

- Common tool in crypto proofs
- "If bad event doesn't happen, then protocol is safe"

In apRHL: up-to-bad rule

In apRHL: up-to-bad rule

Notes

- $\Psi\langle 1\rangle$ is "bad event", only mentions c_{1}

In apRHL: up-to-bad rule

Notes

- $\Psi\langle 1\rangle$ is "bad event", only mentions c_{1}
- If bad event doesn't happen, have privacy

In apRHL: up-to-bad rule

Notes

- $\Psi\langle 1\rangle$ is "bad event", only mentions c_{1}
- If bad event doesn't happen, have privacy
- Bound probability of ψ after c_{1}

Advanced composition theorem

Compose n mechanisms, each (ϵ, δ)-private

- Standard composition: $(n \cdot \epsilon, n \cdot \delta)$-private
- Advanced composition: $\left(\epsilon^{*}, \delta^{*}\right)$-private

$$
\epsilon^{*} \approx \sqrt{n} \cdot \epsilon \quad \text { and } \quad \delta^{*} \approx n \cdot \delta+\delta^{\prime}
$$

Advanced composition theorem

Compose n mechanisms, each (ϵ, δ)-private

- Standard composition: $(n \cdot \epsilon, n \cdot \delta)$-private
- Advanced composition: $\left(\epsilon^{*}, \delta^{*}\right)$-private

$$
\epsilon^{*} \approx \sqrt{n} \cdot \epsilon \quad \text { and } \quad \delta^{*} \approx n \cdot \delta+\delta^{\prime}
$$

Trade off ϵ and δ

Advanced composition theorem

Compose n mechanisms, each (ϵ, δ)-private

- Standard composition: $(n \cdot \epsilon, n \cdot \delta)$-private
- Advanced composition: $\left(\epsilon^{*}, \delta^{*}\right)$-private

$$
\epsilon^{*} \approx \sqrt{n} \cdot \epsilon \quad \text { and } \quad \delta^{*} \approx n \cdot \delta+\delta^{\prime}
$$

Trade off ϵ and δ

Advanced composition theorem

Compose n mechanisms, each (ϵ, δ)-private

- Standard composition: $(n \cdot \epsilon, n \cdot \delta)$-private
- Advanced composition: $\left(\epsilon^{*}, \delta^{*}\right)$-private

$$
\epsilon^{*} \approx \sqrt{n} \cdot \epsilon \quad \text { and } \quad \delta^{*} \approx n \cdot \delta+\delta^{\prime}
$$

Trade off ϵ and δ

In apRHL: new while rule

$$
\begin{gathered}
\models \Theta \rightarrow e\langle 1\rangle=e\langle 2\rangle \quad \vdash\{\Theta \wedge e\langle 1\rangle\} \quad c_{1} \sim(\epsilon, \delta) c_{2}\{\Theta\} \\
\text { AC } \frac{\text { while } e_{1} \text { do } c_{1} \text { exceutes at most } n \text { iterations }}{\vdash\{\Theta\} \text { while } e_{1} \text { do } c_{1} \sim\left(\epsilon^{*}, \delta^{*}\right) \text { while } e_{2} \text { do } c_{2}\{\Theta \wedge \neg e\langle 1\rangle\}}
\end{gathered}
$$

Notes

- Surprising: generalization to approximate couplings
- More surprising: privacy composition directly generalizes

Putting it all together

A brief preview: the Between Thresholds algorithm

Variant of a mechanism by Bun, Steinke, Ullman (2016)

$$
\begin{aligned}
& \mathrm{ASV}_{\mathrm{bt}}(a, b, M, N, d):= \\
& i \leftarrow 0 ; l \leftarrow \square ; \\
& u \leftarrow \mathcal{L}_{\epsilon / 2}(0) ; \\
& A \leftarrow a-u ; B \leftarrow b+u ; \\
& \text { while } i<N \wedge|l|<M \text { do } \\
& i^{\prime} \leftarrow i ; h d \leftarrow-1 ; \\
& \text { while } i^{\prime}<N \text { do } \\
& \text { if }(h d=-1) \\
& q \leftarrow \mathcal{A}(l) ; \\
& S \leftarrow \mathcal{L}_{\epsilon^{\prime} / 3}(\operatorname{evalQ}(q, d)) ; \\
& \quad \text { if }(A \leq S \leq B) \text { then } h d \leftarrow i ; \\
& i \leftarrow i+1 ; \\
& i^{\prime} \leftarrow i^{\prime}+1 ; \\
& \text { if }(h d \neq-1) \text { then } l \leftarrow h d:: l ; \\
& \text { return } l
\end{aligned}
$$

Formalized (ϵ, δ)-privacy in EasyCrypt

Formal proof combines many different features:

- Accuracy-dependent privacy
- Advanced composition
- Adaptively chosen inputs
- "Subset" coupling

Formal proof combines many different features:

- Accuracy-dependent privacy
- Advanced composition
- Adaptively chosen inputs
- "Subset" coupling

Formal proof combines many different features:

- Accuracy-dependent privacy
- Advanced composition
- Adaptively chosen inputs
- "Subset" coupling

Please see the paper!

Our work: formal privacy proofs with:
Accuracy-dependent privacy
Advanced composition
Adaptive inputs

Our work: formal privacy proofs with:

Accuracy-dependent privacy

Advanced composition
Adaptive inputs

