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A new approach to formulating privacy goals: the
risk to one’s privacy, or in general, any type of risk
. . . should not substantially increase as a result of
participating in a statistical database.

This is captured by differential privacy.

— Cynthia Dwork
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Increasing interest
In research. . .

. . . and beyond
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Dwork, McSherry, Nissim, and Smith
Let ε, δ ≥ 0 be parameters, and suppose there is a binary adjacency
relation Adj on D. A randomized algorithm M : D → Distr(R) is
(ε, δ)-differentially private if for every set of outputs S ⊆ R and
every pair of adjacent inputs d1, d2, we have

Prx∼M(d1)[x ∈ S] ≤ exp(ε) · Prx∼M(d2)[x ∈ S] + δ.

How to formally verify?
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Differential privacy is a:

relational property of
probabilistic programs.
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Composition properties

Program is (ε+ ε′, δ + δ′)-private

Formally
Consider randomized algorithms M : D → Distr(R) and
M : R → D → Distr(R ′). If M is (ε, δ)-private and for every
r ∈ R, M ′(r) is (ε′, δ′)-private, then the composition is
(ε+ ε′, δ + δ′)-private:

r $← M(d); res $← M(r , d); return(res)

7



Composition properties

Program is (ε+ ε′, δ + δ′)-private
Formally
Consider randomized algorithms M : D → Distr(R) and
M : R → D → Distr(R ′). If M is (ε, δ)-private and for every
r ∈ R, M ′(r) is (ε′, δ′)-private, then the composition is
(ε+ ε′, δ + δ′)-private:

r $← M(d); res $← M(r , d); return(res) 7



When privacy follows from composition

(Linear types, refinement types, self products, relational Hoare logics, . . . )
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When privacy doesn’t follow from composition
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Complicated privacy proofs

— Lyu, Su, Dong

How to verify these proofs?
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Recent progress (2016)

Differential privacy ≈ Approximate couplings

Approximate couplings ≈ Proofs in the logic apRHL

Only proofs beyond composition
for (ε, 0)-privacy
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Enhance the logic

New coupling constructions
⇓

New proof rules
⇓

Richer formal proofs of privacy
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Our work: formal privacy proofs with:

Accuracy-dependent privacy
Advanced composition
Adaptive inputs
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A crash course: the program logic apRHL [BKOZB]

Imperative language with random sampling

x $← Lε(e)

approximate probabilistic Relational Hoare Logic

` {Φ} c1 ∼(ε,δ) c2 {Ψ}
Non-probablistic, relational (x1 = x2)

Numeric index
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Approximate couplings [BKOZB, BO]
Definition
Let R ⊆ A× A be a relation and ε, δ ≥ 0. Two distributions
µ1, µ2 ∈ Distr(A) are related by an (ε, δ)-approximate coupling
with support R if there exists µL, µR ∈ Distr(A× A) with:

I support in R ;
I π1(µL) = µ1 and π2(µR) = µ2 ;
I for every S ⊆ A× A,

Prz∼µL [z ∈ S] ≤ exp(ε) · Prz∼µR [z ∈ S] + δ

Write: µ1 R](ε,δ) µ2
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Interpreting judgments

` {Φ} c1 ∼(ε,δ) c2 {Ψ}

Two memories related by Φ
⇓

Two distributions related by Ψ]
(ε,δ)
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Differential privacy in apRHL

` {Adj(d1, d2)} c ∼(ε,δ) c {res1 = res2}

(ε, δ)-differential privacy
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Proof rules

Proof rule ≈ Recipe to combine couplings

Sequence rule ≈ standard composition of privacy

Seq
` {Φ} c1 ∼(ε,δ) c2 {Ψ} ` {Ψ} c ′1 ∼(ε′,δ′) c ′2 {Θ}

` {Φ} c1; c ′1 ∼(ε+ε′,δ+δ′) c2; c ′2 {Θ}
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Our work: formal privacy proofs with:

Accuracy-dependent privacy
Advanced composition
Adaptive inputs
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Accuracy-dependent privacy
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Accuracy-dependent privacy

Rough intuition
I Think of δ in (ε, δ)-privacy as failure probability
I “Algorithm is private except with small probability δ”
I “If the noise added is not too large, then . . . ”

Similar to up-to-bad reasoning
I Common tool in crypto proofs
I “If bad event doesn’t happen, then protocol is safe”

21



In apRHL: up-to-bad rule

UtB

` {Φ} c1 ∼(ε,δ) c2 {¬Ψ〈1〉 → x1 = x2}
|= m ∈ Θ =⇒ Pr

[[c1]](m1)
[Ψ〈1〉] < δ′

` {Φ} c1 ∼(ε,δ+δ′) c2 {x1 = x2}

Notes

I Ψ〈1〉 is “bad event”, only mentions c1
I If bad event doesn’t happen, have privacy
I Bound probability of Ψ after c1
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Advanced composition theorem

Compose n mechanisms, each (ε, δ)-private

I Standard composition: (n · ε, n · δ)-private
I Advanced composition: (ε∗, δ∗)-private

ε∗ ≈
√

n · ε and δ∗ ≈ n · δ + δ′

Trade off ε and δ
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In apRHL: new while rule

AC

|= Θ→ e〈1〉 = e〈2〉 ` {Θ ∧ e〈1〉} c1 ∼(ε,δ) c2 {Θ}
while e1 do c1 exceutes at most n iterations

` {Θ} while e1 do c1 ∼(ε∗,δ∗) while e2 do c2 {Θ ∧ ¬e〈1〉}

Notes
I Surprising: generalization to approximate couplings
I More surprising: privacy composition directly generalizes
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Putting it all together
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A brief preview: the Between Thresholds algorithm
Variant of a mechanism by Bun, Steinke, Ullman (2016)

Formalized (ε, δ)-privacy in EasyCrypt
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Formal proof combines many different features:
I Accuracy-dependent privacy
I Advanced composition
I Adaptively chosen inputs
I “Subset” coupling

Please see the paper!
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