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A new approach to formulating privacy goals: the
risk to one’s privacy, or in general, any type of risk
. . . should not substantially increase as a result of
participating in a statistical database.

This is captured by differential privacy.

— Cynthia Dwork
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Increasing interest
In research. . .

. . . and in the “real world”
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Dwork, McSherry, Nissim, and Smith
Let ε ≥ 0 be a parameter, and suppose there is a binary adjacency
relation Adj on D. A randomized algorithm M : D → Distr(R) is
ε-differentially private if for every set of outputs S ⊆ R and every
pair of adjacent inputs d1, d2, we have

Prx∼M(d1)[x ∈ S] ≤ exp(ε) · Prx∼M(d2)[x ∈ S].
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Composition properties

Database ε-private ε-private Output

Whole program is 2ε-private

Formally . . .
Consider randomized algorithms M : D → Distr(R) and
M : R → D → Distr(R ′). If M is ε-private and for every r ∈ R,
M ′(r) is ε′-private, then the composition is (ε + ε′)-private:

r $← M(d); res $← M(r , d); return(res)
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Differential privacy is a:

relational property of
probabilistic programs.
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When privacy follows from composition. . .

(Linear types, refinement types, self products, relational Hoare logics, . . . )
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When privacy doesn’t follow from composition. . .

How to formally verify?
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Use approximate coupling view of
privacy to extend the logic apRHL

Combine smaller, pointwise proofs to
prove differential privacy in apRHL

Get new, much simpler proofs using
coupling composition principle

(Also, I might be looking for a job . . . )
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A crash course: apRHL [BKOZB]

Imperative language with sampling

x $← Lε(e)

approximate probabilistic Relational Hoare Logic

` {Φ} c1 ∼ε c2 {Ψ}
Non-probablistic
Numeric index
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Approximate liftings [BKOZB, BO]
Definition
Let R ⊆ A× A be a relation and ε ≥ 0. Two distributions
µ1, µ2 ∈ Distr(A) are related by the ε-approximate lifting of R if
there exists µL, µR ∈ Distr(A× A) with:

I support in R ;
I π1(µL) = µ1 and π2(µR) = µ2 ;
I for every S ⊆ A× A,

Prz∼µL [z ∈ S] ≤ exp(ε) · Prz∼µR [z ∈ S]

Write: µ1 R]ε µ2
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Interpreting judgments

` {Φ} c1 ∼ε c2 {Ψ}

Memories related by Φ
⇓

Distributions related by Ψ]ε
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Differential privacy in apRHL

` {Adj(d1, d2)} c ∼ε c {res1 = res2}

Exactly ε-differential privacy
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Proof system
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Proof system
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(Laplace) Sampling rule

` {|e1 − e2| ≤ k} x1 $← Lε(e1) ∼k·ε x2 $← Lε(e2) {x1 = x2}
Lap

“Pay” distance between centers
⇓

Assume samples are equal
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Sequence rule

` {Φ} c1 ∼ε c2 {Θ} ` {Θ} c ′1 ∼ε′ c ′2 {Ψ}
` {Φ} c1; c ′1 ∼ε+ε′ c2; c ′2 {Ψ}

Seq

Generalizes privacy composition
I Θ, Ψ assert equality on outputs

“Costs” sum up

Assume “paid” facts in rest of program

17



Sequence rule

` {Φ} c1 ∼ε c2 {Θ} ` {Θ} c ′1 ∼ε′ c ′2 {Ψ}
` {Φ} c1; c ′1 ∼ε+ε′ c2; c ′2 {Ψ}

Seq

Generalizes privacy composition
I Θ, Ψ assert equality on outputs

“Costs” sum up

Assume “paid” facts in rest of program

17



The coupling perspective

Approximate liftings are
approximate versions of
probabilistic couplings

New liftings ⇐⇒ New proof rules
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New sampling rule: [LapNull]

x1 /∈ FV (e1), x2 /∈ FV (e2)
` {>} x1 $← Lε(e1) ∼0 x2 $← Lε(e2) {x1 − x2 = e1 − e2}

“Pay” zero cost
⇓

Distance between samples
=

Distance between centers
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New sampling rule: [LapGen]

x1 /∈ FV (e1), x2 /∈ FV (e2)
` {|e1 − (e2 + s)| ≤ k} x1 $← Lε(e1) ∼k·ε x2 $← Lε(e2) {x1 = x2 + s}

“Pay” distance to shift centers
⇓

Assume shifted samples
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New lifting principle: combining pointwise liftings

for all v , ` {Φ} c1 ∼ε c2 {(e1 = v)→ (e2 = v)}
` {Φ} c1 ∼ε c2 {e1 = e2}

PW-Eq

Separate proofs for each output
⇓

Combine for differential privacy
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Logical interpretation

Leibniz equality

(∀v , (e1 = v)→ (e2 = v))→ e1 = e2

Internalizing a universal quantifier
I Not sound in general
I Sound for certain equality predicates
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Logical interpretation

∀ values, ∃ a lifting such that . . .
⇓

∃ a lifting such that ∀ values, . . .
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Putting it all together

Please see the paper!
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A brief preview: the Above Threshold algorithm

AT (t, d) = {
i ← 1; x ← 0;
t̃ $← Lε/2(t);
while i ≤ k do

s $← Lε/4(q[i ](d));
if (s ≥ t̃ ∧ x = 0) then x ← i ;
i ← i + 1;

return x
}

Standard composition: AT (t,−) is kε-private

In fact: AT (t,−) is ε-private
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Complicated privacy proof(s)

— Lyu, Su, Dong
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Many slightly different versions

— Lyu, Su, Dong
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Use approximate coupling view of
privacy to extend the logic apRHL

Combine smaller, pointwise proofs to
prove differential privacy in apRHL

Get new, much simpler proofs using
coupling composition principle

(Also, I might be looking for a job . . . )
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