Relational reasoning via probabilistic coupling

Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, Léo Stefanesco, Pierre-Yves Strub

IMDEA Software, ENS Cachan, ENS Lyon, Inria, University of Pennsylvania

November 28, 2015

Properties about two runs of the same program

- Assume inputs are related by Ψ
- \blacktriangleright Want to prove the outputs are related by Φ

Examples

Monotonicity

- $\blacktriangleright \ \Psi : \ \textit{in}_1 \leq \textit{in}_2$
- Φ : $out_1 \leq out_2$
- "Bigger inputs give bigger outputs"

Examples

Monotonicity

- Ψ : $in_1 \leq in_2$
- Φ : $out_1 \leq out_2$
- "Bigger inputs give bigger outputs"

Non-interference

- Ψ : $low_1 = low_2$
- Φ : $out_1 = out_2$
- "If low-security inputs are the same, then outputs are the same"

Probabilistic relational properties

Richer properties

- Differential privacy
- Cryptographic indistinguishability

Probabilistic relational properties

Richer properties

- Differential privacy
- Cryptographic indistinguishability

Verification tool: pRHL [BGZ-B]

- ► Imperative while language + command for random sampling
- Deterministic input, randomized output
- ► Hoare-style logic

Inspiration from probability theory

Probabilistic couplings

- Used by mathematicians for proving relational properties
- ► Applications: Markov chains, probabilistic processes

Idea

- Place two processes in the same probability space
- Coordinate the sampling

Our results

Main observation

The logic pRHL internalizes coupling

Our results

Main observation

The logic pRHL internalizes coupling

Consequences

- \blacktriangleright Constructing pRHL proof \rightarrow constructing a coupling
- Can verify classic examples of couplings in mathematics with proof assistant EasyCrypt (built on pRHL)

The plan

Today

- Introducing probabilistic couplings
- ► Introducing the relational logic pRHL
- Example: convergence of random walks

Probabilistic couplings

Introducing to probabilistic couplings

Basic ingredients

- Given: two distributions X_1, X_2 over set A
- Produce: joint distribution Y over $A \times A$
 - Distribution over the first component is X_1
 - Distribution over the second component is X_2

Introducing to probabilistic couplings

Basic ingredients

- Given: two distributions X_1, X_2 over set A
- Produce: joint distribution Y over $A \times A$
 - Distribution over the first component is X_1
 - Distribution over the second component is X_2

Definition

Given two distributions X_1, X_2 over a set A, a coupling Y is a distribution over $A \times A$ such that $\pi_1(Y) = X_1$ and $\pi_2(Y) = X_2$.

Example: mirrored random walks

Simple random walk on integers

- Start at position p = 0
- Each step, flip coin $x \xleftarrow{} flip$
- Heads: $p \leftarrow p + 1$
- Tails: $p \leftarrow p 1$

Example: mirrored random walks

Simple random walk on integers

- Start at position p = 0
- Each step, flip coin $x \xleftarrow{\$} flip$
- Heads: $p \leftarrow p + 1$
- Tails: $p \leftarrow p 1$

Figure: Simple random walk

Coupling the walks to meet

Case $p_1 = p_2$: Walks have met

- Arrange samplings $x_1 = x_2$
- ► Continue to have p₁ = p₂

Coupling the walks to meet

Case $p_1 = p_2$: Walks have met

- Arrange samplings $x_1 = x_2$
- Continue to have $p_1 = p_2$

Case $p_1 \neq p_2$: Walks have not met

- Arrange samplings $x_1 = \neg x_2$
- ► Walks make mirror moves

Coupling the walks to meet

Case $p_1 = p_2$: Walks have met

- Arrange samplings $x_1 = x_2$
- Continue to have $p_1 = p_2$

Case $p_1 \neq p_2$: Walks have not met

- Arrange samplings $x_1 = \neg x_2$
- ► Walks make mirror moves

Under coupling, if walks meet, they move together

Why is this interesting?

Goal: memorylessness

- Start two random walks at w and w + 2k
- ► To show: position distributions converge as we take more steps

Why is this interesting?

Goal: memorylessness

- Start two random walks at w and w + 2k
- ► To show: position distributions converge as we take more steps

Coupling bounds distance between distributions

- ► Once walks meet, they stay equal
- Distance is at most probability walks don't meet

Why is this interesting?

Goal: memorylessness

- Start two random walks at w and w + 2k
- ► To show: position distributions converge as we take more steps

Coupling bounds distance between distributions

- ► Once walks meet, they stay equal
- Distance is at most probability walks don't meet

Theorem

If Y is a coupling of two distributions (X_1, X_2) , then

$$\|X_1-X_2\|_{TV} riangleq \sum_{a\in A} |X_1(a)-X_2(a)| \leq \Pr_{(y_1,y_2)\sim Y} [y_1
eq y_2].$$

The logic pRHL

The program logic pRHL

Probabilistic Relational Hoare Logic

- ► Hoare-style logic for probabilistic relational properties
- ► Proposed by Barthe, Grégoire, Zanella-Béguelin
- Implemented in the EasyCrypt proof assistant for crypto proofs

Language and judgments

The pWhile imperative language

 $c ::= x \leftarrow e \mid x \leq d \mid \text{if } e \text{ then } c \text{ else } c \mid \text{while } e \text{ do } c \mid \text{skip} \mid c; c$

Language and judgments

The pWhile imperative language

$$c ::= x \leftarrow e \mid x \not a \mid$$
 if e then c else c | while e do c | skip | c; c

Language and judgments

The pWhile imperative language

Basic pRHL judgments

 $\vDash c_1 \sim c_2 : \Psi \Rightarrow \Phi$

- Ψ and Φ are formulas over labeled program variables x_1 , x_2
- Ψ is precondition, Φ is postcondition

Interpreting the judgment

$\vDash c_1 \sim c_2 : \Psi \Rightarrow \Phi$

Interpreting the judgment

$$\vDash c_1 \sim c_2 : \Psi \Rightarrow \Phi$$

Interpreting pre- and post-conditions

- Ψ interpreted as a relation on two memories
- Φ interpreted as a relation Φ^{\dagger} on distributions over memories

Interpreting the judgment

$$\vDash c_1 \sim c_2 : \Psi \Rightarrow \Phi$$

Interpreting pre- and post-conditions

- Ψ interpreted as a relation on two memories
- Φ interpreted as a relation Φ^{\dagger} on distributions over memories

Definition (Couplings in disguise!)

If Φ is a relation on A, the lifted relation Φ^{\dagger} is a relation on **Distr**(A) where $\mu_1 \Phi^{\dagger} \mu_2$ if there exists $\mu \in \text{Distr}(A \times A)$ with

- supp $(\mu) \subseteq \Phi$; and
- $\pi_1(\mu) = \mu_1$ and $\pi_2(\mu) = \mu_2$.

The key rule: Sampling

SAMPLE
$$\frac{f \in T \xrightarrow{1-1} T \quad \forall v \in T. \ d_1(v) = d_2(f \ v)}{\models x_1 \nleftrightarrow d_1 \sim x_2 \nleftrightarrow d_2 : \forall v, \ \Phi[v/x_1, f(v)/x_2] \Rightarrow \Phi}$$

The key rule: Sampling

$$\begin{array}{c} \text{SAMPLE} & \overbrace{f \in \mathcal{T} \xrightarrow{1-1} \mathcal{T}} \quad \forall v \in \mathcal{T}. \ d_1(v) = d_2(f \ v) \\ \hline \\ \vDash x_1 \not \sim d_1 \sim x_2 \not \sim d_2 : \forall v, \ \Phi[v/x_1, f(v)/x_2] \ \Rightarrow \Phi \end{array}$$

The key rule: Sampling

$$\begin{array}{c} \text{SAMPLE} & \overbrace{f \in \mathcal{T} \stackrel{1-1}{\longrightarrow} \mathcal{T}} \quad \forall v \in \mathcal{T}. \ d_1(v) = d_2(f \ v) \\ \hline \\ \vDash x_1 \xleftarrow{s} d_1 \sim x_2 \xleftarrow{s} d_2 : \forall v, \ \Phi[v/x_1, f(v)/x_2] \ \Rightarrow \Phi \end{array}$$

Notes

► Bijection *f*: specifies how to coordinate the samples

The key rule: Sampling

$$\text{SAMPLE} \begin{array}{c} f \in \mathcal{T} \xrightarrow{1-1} \mathcal{T} \quad \forall v \in \mathcal{T}. \ d_1(v) = d_2(f \ v) \\ \vDash x_1 \not \leftarrow d_1 \sim x_2 \not \leftarrow d_2 : \forall v, \ \Phi[v/x_1, f(v)/x_2] \Rightarrow \Phi \end{array}$$

Notes

▶ Bijection *f*: specifies how to coordinate the samples

The key rule: Sampling

$$\text{SAMPLE} \begin{array}{c} f \in \mathcal{T} \xrightarrow{1-1} \mathcal{T} \quad \forall v \in \mathcal{T}. \ d_1(v) = d_2(f \ v) \\ \vDash x_1 \not \leftarrow d_1 \sim x_2 \not \leftarrow d_2 : \forall v, \ \Phi[v/x_1, f(v)/x_2] \Rightarrow \Phi \end{array}$$

- ► Bijection *f*: specifies how to coordinate the samples
- ► Side condition: marginals are preserved under f

The key rule: Sampling

SAMPLE
$$\frac{f \in T \xrightarrow{1-1} T \quad \forall v \in T. \ d_1(v) = d_2(f \ v)}{\models x_1 \nleftrightarrow d_1 \sim x_2 \nleftrightarrow d_2 : \forall v, \ \Phi[v/x_1, f(v)/x_2] \Rightarrow \Phi}$$

- ► Bijection *f*: specifies how to coordinate the samples
- ► Side condition: marginals are preserved under *f*

The key rule: Sampling

SAMPLE
$$\frac{f \in T \xrightarrow{1-1} T \quad \forall v \in T. \ d_1(v) = d_2(f \ v)}{\models x_1 \nleftrightarrow d_1 \sim x_2 \nleftrightarrow d_2 : \forall v, \ \Phi[v/x_1, f(v)/x_2] \Rightarrow \Phi}$$

- ► Bijection *f*: specifies how to coordinate the samples
- ► Side condition: marginals are preserved under f
- \blacktriangleright Assume: samples coupled when proving postcondition Φ

Examples

by Steve Berardi

Example: mirroring random walks in pRHL

The code

Example: mirroring random walks in pRHL

The code

```
pos ← start; // Start position
i \leftarrow 0;
H \leftarrow [1]:
                       // Ghost code
while i < N do
  b \stackrel{\$}{\leftarrow} flip;
  H \leftarrow b :: H; // Ghost code
  if b then
    pos \leftarrow pos + 1;
  else
     pos \leftarrow pos - 1;
end
return pos // Final position
```

Goal: couple two walks via mirroring

Record the history

н stores history of flips

- $\Sigma(H)$ is the net distance that the first process moves to the right
- *Meet*(H) if there is prefix H' of H with $\Sigma(H') = k$

Specify the coupling

Sampling rule

$$\text{SAMPLE} \xrightarrow{f \in T \xrightarrow{1-1} T \quad \forall v \in T. \ d_1(v) = d_2(f \ v)}_{\models x_1 \not \leftarrow d_1 \sim x_2 \not \leftarrow d_2 : \forall v, \Phi[v/x_1, f(v)/x_2] \Rightarrow \Phi}$$

Specify the coupling

Sampling rule

SAMPLE
$$\frac{f \in T \xrightarrow{1-1} T \quad \forall v \in T. \ d_1(v) = d_2(f \ v)}{\models x_1 \stackrel{\text{s}}{\leftarrow} d_1 \sim x_2 \stackrel{\text{s}}{\leftarrow} d_2 : \forall v, \Phi[v/x_1, f(v)/x_2] \Rightarrow \Phi}$$

Case on $Meet(H_1)$

- ▶ True: take bijection *f* to be *id*
- False: take bijection f to be negation \neg

$\vDash c \sim c: \; \mathsf{start}_1 + 2k = \mathsf{start}_2 \; \Rightarrow \; (\textit{Meet}(\mathtt{H}_1) \rightarrow \mathsf{pos}_1 = \mathsf{pos}_2)$

How to read

$\vdash c \sim c: |\mathsf{start}_1 + 2k = \mathsf{start}_2 \Rightarrow (\mathit{Meet}(\mathtt{H}_1) \rightarrow \mathsf{pos}_1 = \mathsf{pos}_2)|$

How to read

$\vdash c \sim c: |\mathsf{start}_1 + 2k = \mathsf{start}_2 \Rightarrow (\mathit{Meet}(\mathtt{H}_1) \rightarrow \mathsf{pos}_1 = \mathsf{pos}_2)|$

How to read

▶ The two walks start 2k apart

$\vDash c \sim c: \; \mathsf{start}_1 + 2k = \mathsf{start}_2 \; \Rightarrow \; (\textit{Meet}(\mathtt{H}_1) \rightarrow \mathsf{pos}_1 = \mathsf{pos}_2)$

How to read

▶ The two walks start 2k apart

$\vDash c \sim c: \text{ start}_1 + 2k = \text{start}_2 \implies (\textit{Meet}(\texttt{H}_1) \rightarrow \texttt{pos}_1 = \texttt{pos}_2)$

How to read

- ► The two walks start 2k apart
- If walks have met before, their positions are equal

Further examples

Lazy random walk on torus

Figure: Lazy random walk on a two dimensional torus

Further examples

Lazy random walk on torus

Figure: Lazy random walk on a two dimensional torus

Stochastic domination

- Notion of ordering for probabilistic processes
- Proved via couplings

Wrapping up

basic swaddle

Open problems

Handling more advanced couplings

- ► Shift couplings, path couplings, etc.
- ► Hard example: constructive Lovász Local Lemma by Moser

Quantitative bounds

- How long does it take for the mirrored walks to meet?
- Non-relational reasoning

Borrow more ideas from the coupling literature

► Couplings from mathematics may suggest natural rules to add

Relational reasoning via probabilistic coupling

Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, Léo Stefanesco, Pierre-Yves Strub

IMDEA Software, ENS Cachan, ENS Lyon, Inria, University of Pennsylvania

November 28, 2015