Relational reasoning via probabilistic coupling

Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, Léo Stefanesco, Pierre-Yves Strub

IMDEA Software, ENS Cachan, ENS Lyon, Inria, University of Pennsylvania

November 28, 2015

Relational properties

Properties about two runs of the same program

- Assume inputs are related by ψ
- Want to prove the outputs are related by Φ

Examples

Monotonicity

- $\psi: i n_{1} \leq i n_{2}$
- Φ : out l $_{1} \leq$ out $_{2}$
- "Bigger inputs give bigger outputs"

Examples

Monotonicity

$\downarrow \Psi: i n_{1} \leq i n_{2}$

- $\Phi:$ out $_{1} \leq$ out $_{2}$
- "Bigger inputs give bigger outputs"

Non-interference

> $\Psi:{ }^{\prime}{ }^{\circ} W_{1}=$ low $_{2}$

- Φ : out $t_{1}=$ out $_{2}$
- "If low-security inputs are the same, then outputs are the same"

Probabilistic relational properties

Richer properties

- Differential privacy
- Cryptographic indistinguishability

Probabilistic relational properties

Richer properties

- Differential privacy
- Cryptographic indistinguishability

Verification tool: pRHL [BGZ-B]

- Imperative while language + command for random sampling
- Deterministic input, randomized output
- Hoare-style logic

Inspiration from probability theory

Probabilistic couplings

- Used by mathematicians for proving relational properties
- Applications: Markov chains, probabilistic processes

Idea

- Place two processes in the same probability space
- Coordinate the sampling

Our results

Main observation
The logic pRHL internalizes coupling

Our results

Main observation
The logic pRHL internalizes coupling

Consequences

- Constructing pRHL proof \rightarrow constructing a coupling
- Can verify classic examples of couplings in mathematics with proof assistant EasyCrypt (built on pRHL)

The plan

Today

- Introducing probabilistic couplings
- Introducing the relational logic pRHL
- Example: convergence of random walks

Probabilistic couplings

Introducing to probabilistic couplings

Basic ingredients

- Given: two distributions X_{1}, X_{2} over set A
- Produce: joint distribution Y over $A \times A$
- Distribution over the first component is X_{1}
- Distribution over the second component is X_{2}

Introducing to probabilistic couplings

Basic ingredients

- Given: two distributions X_{1}, X_{2} over set A
- Produce: joint distribution Y over $A \times A$
- Distribution over the first component is X_{1}
- Distribution over the second component is X_{2}

Definition

Given two distributions X_{1}, X_{2} over a set A, a coupling Y is a distribution over $A \times A$ such that $\pi_{1}(Y)=X_{1}$ and $\pi_{2}(Y)=X_{2}$.

Example: mirrored random walks

Simple random walk on integers

- Start at position $p=0$
- Each step, flip coin $x \stackrel{\S}{\leftarrow}^{〔}$ flip
- Heads: $p \leftarrow p+1$
\downarrow Tails: $p \leftarrow p-1$

Example: mirrored random walks

Simple random walk on integers

- Start at position $p=0$
- Each step, flip coin $x \stackrel{s}{s}^{\text {s }}$ flip
- Heads: $p \leftarrow p+1$
- Tails: $p \leftarrow p-1$

Figure: Simple random walk

Coupling the walks to meet

Case $p_{1}=p_{2}$: Walks have met

- Arrange samplings $x_{1}=x_{2}$
- Continue to have $p_{1}=p_{2}$

Coupling the walks to meet

Case $p_{1}=p_{2}$: Walks have met

- Arrange samplings $x_{1}=x_{2}$
- Continue to have $p_{1}=p_{2}$

Case $p_{1} \neq p_{2}$: Walks have not met

- Arrange samplings $x_{1}=\neg x_{2}$
- Walks make mirror moves

Coupling the walks to meet

Case $p_{1}=p_{2}$: Walks have met

- Arrange samplings $x_{1}=x_{2}$
- Continue to have $p_{1}=p_{2}$

Case $p_{1} \neq p_{2}$: Walks have not met

- Arrange samplings $x_{1}=\neg x_{2}$
- Walks make mirror moves

Under coupling, if walks meet, they move together

Why is this interesting?

Goal: memorylessness

- Start two random walks at w and $w+2 k$
- To show: position distributions converge as we take more steps

Why is this interesting?

Goal: memorylessness

- Start two random walks at w and $w+2 k$
- To show: position distributions converge as we take more steps

Coupling bounds distance between distributions

- Once walks meet, they stay equal
- Distance is at most probability walks don't meet

Why is this interesting?

Goal: memorylessness

- Start two random walks at w and $w+2 k$
- To show: position distributions converge as we take more steps

Coupling bounds distance between distributions

- Once walks meet, they stay equal
- Distance is at most probability walks don't meet

Theorem
If Y is a coupling of two distributions $\left(X_{1}, X_{2}\right)$, then

$$
\left\|X_{1}-X_{2}\right\|_{T V} \triangleq \sum_{a \in A}\left|X_{1}(a)-X_{2}(a)\right| \leq \operatorname{Pr}_{\left(y_{1}, y_{2}\right) \sim Y}\left[y_{1} \neq y_{2}\right] .
$$

The logic pRHL

The program logic pRHL

Probabilistic Relational Hoare Logic

- Hoare-style logic for probabilistic relational properties
- Proposed by Barthe, Grégoire, Zanella-Béguelin
- Implemented in the EasyCrypt proof assistant for crypto proofs

Language and judgments

The pWhile imperative language
$c::=x \leftarrow e|x \nleftarrow d|$ if e then c else $c \mid$ while e do $c \mid$ skip $\mid c ; c$

Language and judgments

The pWhile imperative language

$$
c::=x \leftarrow e \mid x \underbrace{s} d \text { if } e \text { then } c \text { else } c \mid \text { while } e \text { do } c \mid \text { skip } \mid c ; c
$$

Language and judgments

The pWhile imperative language
$c::=x \leftarrow e \mid x \underbrace{s} d$ if e then c else $c \mid$ while e do $c \mid$ skip |c; c

Basic pRHL judgments

$$
\vDash c_{1} \sim c_{2}: \Psi \Rightarrow \Phi
$$

- ψ and Φ are formulas over labeled program variables x_{1}, x_{2}
- Ψ is precondition, Φ is postcondition

Interpreting the judgment

$$
\vDash c_{1} \sim c_{2}: \Psi \Rightarrow \Phi
$$

Interpreting the judgment

Interpreting pre- and post-conditions

- Ψ interpreted as a relation on two memories
- ϕ interpreted as a relation ϕ^{\dagger} on distributions over memories

Interpreting the judgment

$$
\vDash c_{1} \sim c_{2}: \Psi \Rightarrow \Phi
$$

Interpreting pre- and post-conditions

- Ψ interpreted as a relation on two memories
- ϕ interpreted as a relation ϕ^{\dagger} on distributions over memories

Definition (Couplings in disguise!)
If ϕ is a relation on A, the lifted relation ϕ^{\dagger} is a relation on
$\operatorname{Distr}(A)$ where $\mu_{1} \Phi^{\dagger} \mu_{2}$ if there exists $\mu \in \operatorname{Distr}(A \times A)$ with

- $\operatorname{supp}(\mu) \subseteq \Phi_{\text {; and }}$
- $\pi_{1}(\mu)=\mu_{1}$ and $\pi_{2}(\mu)=\mu_{2}$.

Proof rules

The key rule: Sampling
SAMPLE $\frac{f \in T \xrightarrow{\frac{1-1}{\longrightarrow}} T \quad \forall v \in T . d_{1}(v)=d_{2}(f v)}{\vDash x_{1} \& d_{1} \sim x_{2} \& d_{2}: \forall v, \Phi\left[v / x_{1}, f(v) / x_{2}\right] \Rightarrow \Phi}$

Notes

Proof rules

The key rule: Sampling
SAMPLE $\frac{f \in T \stackrel{1-1}{\longrightarrow} T \quad \forall v \in T . d_{1}(v)=d_{2}(f v)}{\vDash x_{1} \& d_{1} \sim x_{2} \& d_{2}: \forall v, \Phi\left[v / x_{1}, f(v) / x_{2}\right] \Rightarrow \Phi}$

Notes

Proof rules

The key rule: Sampling
$\operatorname{SAMPLE} \frac{f \in T^{1-1} T \quad \forall v \in T . d_{1}(v)=d_{2}(f v)}{\vDash x_{1} \iota_{s}^{s} d_{1} \sim x_{2} \psi_{-}^{s} d_{2}: \forall v, \Phi\left[v / x_{1}, f(v) / x_{2}\right] \Rightarrow \phi}$

Notes

- Bijection f : specifies how to coordinate the samples

Proof rules

The key rule: Sampling
SAMPLE $\frac{\left.f \in T \xrightarrow{1-1} T \quad \forall v \in T \cdot d_{1}(v)=d_{2}(f v)\right)}{\vDash x_{1}\left\langle^{s} d_{1} \sim x_{2}{ }^{s} d_{2}: \forall v, \Phi\left[v / x_{1}, f(v) / x_{2}\right] \Rightarrow \phi\right.}$

Notes

- Bijection f : specifies how to coordinate the samples

Proof rules

The key rule: Sampling
SAMPLE $\frac{\left.f \in T \xrightarrow{1-1} T \quad \forall v \in T \cdot d_{1}(v)=d_{2}(f v)\right)}{\vDash x_{1} \leqslant s d_{1} \sim x_{2}\left\{_{s}^{s} d_{2}: \forall v, \Phi\left[v / x_{1}, f(v) / x_{2}\right] \Rightarrow \phi\right.}$

Notes

- Bijection f : specifies how to coordinate the samples
- Side condition: marginals are preserved under f

Proof rules

The key rule: Sampling
SAMPLE $\frac{f \in T \xrightarrow{1-1} T \quad \forall v \in T . d_{1}(v)=d_{2}(f v)}{\vDash x_{1} \& s d_{1} \sim x_{2} \& d_{2}: \forall v, \Phi\left[v / x_{1}, f(v) / x_{2}\right] \Rightarrow \phi}$

Notes

- Bijection f : specifies how to coordinate the samples
- Side condition: marginals are preserved under f

Proof rules

The key rule: Sampling
SAMPLE $\frac{f \in T \xrightarrow{\frac{1-1}{\longrightarrow} T \quad \forall v \in T . d_{1}(v)=d_{2}(f v)}}{\vDash x_{1} \& d_{1} \sim x_{2} \& d_{2}: \forall v, \Phi\left[v / x_{1}, f(v) / x_{2}\right] \Rightarrow \Phi}$

Notes

- Bijection f : specifies how to coordinate the samples
- Side condition: marginals are preserved under f
- Assume: samples coupled when proving postcondition Φ

Examples

by Steve Bravadi

Example: mirroring random walks in pRHL

The code

```
pos \leftarrowstart; // Start position
i}\leftarrow0
H}\leftarrow[]; // Ghost cod
while i < N do
    b $
    H\leftarrow\textrm{b}:: H; // Ghost code
    if b then
        pos \leftarrow pos + 1;
    else
        pos \leftarrowpos - 1;
    fi
i}\leftarrowi+1
end
return pos // Final position
```


Example: mirroring random walks in pRHL

The code

```
pos \leftarrowstart; // Start position
i}\leftarrow0
H}\leftarrow[]; // Ghost cod
while i < N do
    b }\stackrel{$}{\leftarrow}\mathrm{ flip;
    H\leftarrow\textrm{b}:: H; // Ghost code
    if b then
        pos \leftarrow pos + 1;
    else
        pos \leftarrow pos - 1;
    fi
i\leftarrowi + 1;
end
return pos // Final position
```


Goal: couple two walks via mirroring

Record the history

H stores history of flips

- $\Sigma(H)$ is the net distance that the first process moves to the right
- $\operatorname{Meet}(\mathrm{H})$ if there is prefix H^{\prime} of H with $\Sigma\left(\mathrm{H}^{\prime}\right)=k$

Specify the coupling

Sampling rule
SAMPLE $\frac{f \in T \xrightarrow{1-1} T \quad \forall v \in T . d_{1}(v)=d_{2}(f v)}{\vDash x_{1} \&^{s} d_{1} \sim x_{2} \varkappa^{s} \quad d_{2}: \forall v, \Phi\left[v / x_{1}, f(v) / x_{2}\right] \Rightarrow \Phi}$

Specify the coupling

Sampling rule
SAMPLE $\xrightarrow{f \in T \xrightarrow{\frac{1-1}{\longrightarrow}} T \quad \forall v \in T . d_{1}(v)=d_{2}(f v)}$
Case on $\operatorname{Meet}\left(\mathrm{H}_{1}\right)$

- True: take bijection f to be id
- False: take bijection f to be negation $ᄀ$

Final judgment

$\vDash c \sim c: \operatorname{start}_{1}+2 k=\operatorname{start}_{2} \Rightarrow\left(\operatorname{Meet}\left(H_{1}\right) \rightarrow \operatorname{pos}_{1}=\operatorname{pos}_{2}\right)$

How to read

Final judgment

$$
\vDash c \sim c: \operatorname{start}_{1}+2 k=\operatorname{start}{ }_{2} \Rightarrow\left(\operatorname{Meet}\left(H_{1}\right) \rightarrow \operatorname{pos}_{1}=\operatorname{pos}_{2}\right)
$$

How to read

Final judgment

$\vDash c \sim c: \operatorname{start}_{1}+2 k=\operatorname{start}_{2} \Rightarrow\left(\operatorname{Meet}\left(H_{1}\right) \rightarrow \operatorname{pos}_{1}=\operatorname{pos}_{2}\right)$
How to read

- The two walks start $2 k$ apart

Final judgment

$\vDash c \sim c: \operatorname{start}_{1}+2 k=\operatorname{start}_{2} \Rightarrow\left(\operatorname{Meet}\left(H_{1}\right) \rightarrow \operatorname{pos}_{1}=\operatorname{pos}_{2}\right)$

How to read

- The two walks start $2 k$ apart

Final judgment

$\vDash c \sim c: \operatorname{start}_{1}+2 k=\operatorname{start}_{2} \Rightarrow\left(\operatorname{Meet}\left(\mathrm{H}_{1}\right) \rightarrow \operatorname{pos}_{1}=\operatorname{pos}_{2}\right)$

How to read

- The two walks start $2 k$ apart
- If walks have met before, their positions are equal

Further examples

Lazy random walk on torus

Figure: Lazy random walk on a two dimensional torus

Further examples

Lazy random walk on torus

Figure: Lazy random walk on a two dimensional torus

Stochastic domination

- Notion of ordering for probabilistic processes
- Proved via couplings

Wrapping up

basic swaddle

Open problems

Handling more advanced couplings

- Shift couplings, path couplings, etc.
- Hard example: constructive Lovász Local Lemma by Moser

Quantitative bounds

- How long does it take for the mirrored walks to meet?
- Non-relational reasoning

Borrow more ideas from the coupling literature

- Couplings from mathematics may suggest natural rules to add

Relational reasoning via probabilistic coupling

Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, Léo Stefanesco, Pierre-Yves Strub

IMDEA Software, ENS Cachan, ENS Lyon, Inria, University of Pennsylvania

November 28, 2015

