
Higher-Order Relational Refinement Types
for Mechanism Design and Differential Privacy

Gilles Barthe1, Marco Gaboardi2,
Emilio Jesús Gallego Arias3,4, Justin Hsu4,

Aaron Roth4, Pierre-Yves Strub1

1IMDEA Software, 2University of Dundee,
3CRI Mines–ParisTech, 4University of Pennsylvania

January 15th, 2015

The Application

Mechanism Design

A story
One painting for sale

How much will you pay?

$10 million!

$50 million!
$10.1 million?

$3

Who wins, and for how much?

A story
One painting for sale How much will you pay?

$10 million!

$50 million!
$10.1 million?

$3

Who wins, and for how much?

A story
One painting for sale How much will you pay?

$10 million!

$50 million!

$10.1 million?

$3

Who wins, and for how much?

A story
One painting for sale How much will you pay?

$10 million!

$50 million!

$10.1 million?

$3

Who wins, and for how much?

A story

Top bid pays top price?
• Simple rule
• Can encourage

manipulation...

How much will you pay?

$10 million!

$50 million!

$10.1 million?

$3

Who wins, and for how much?

A story

Top bid pays top price?
• Simple rule
• Can encourage

manipulation...

How much will you pay?

$10 million!

$50 million!
$10.1 million?

$3

Who wins, and for how much?

What is Mechanism Design?

Algorithm design with strategic inputs

Rational agents
• Report data
• Care about output
• May lie, strategize

Goal: encourage “good” behavior

What is Mechanism Design?

Algorithm design with strategic inputs

Rational agents
• Report data
• Care about output
• May lie, strategize

Goal: encourage “good” behavior

What is Mechanism Design?

Algorithm design with strategic inputs

Rational agents
• Report data
• Care about output
• May lie, strategize

Goal: encourage “good” behavior

Truthfulness

Designing auctions
• Bidders each have personal value v : R for the item

• Bidder’s happiness is function of price, v , whether they win
• Bidder reports a bid b : R to the mechanism

Property: agent always maximizes happiness with b “ v

Truthfulness

Designing auctions
• Bidders each have personal value v : R for the item
• Bidder’s happiness is function of price, v , whether they win

• Bidder reports a bid b : R to the mechanism

Property: agent always maximizes happiness with b “ v

Truthfulness

Designing auctions
• Bidders each have personal value v : R for the item
• Bidder’s happiness is function of price, v , whether they win
• Bidder reports a bid b : R to the mechanism

Property: agent always maximizes happiness with b “ v

Truthfulness

Designing auctions
• Bidders each have personal value v : R for the item
• Bidder’s happiness is function of price, v , whether they win
• Bidder reports a bid b : R to the mechanism

Property: agent always maximizes happiness with b “ v

A (very) simple auction

Fixed price auction
• Given a fixed price price
• Bidder bids bid, buys item if higher than price

What is the happiness function for a bidder?
fixedprice price value bid =

if bid > price then
value - price

else
0

A (very) simple auction

Fixed price auction
• Given a fixed price price
• Bidder bids bid, buys item if higher than price

What is the happiness function for a bidder?
fixedprice price value bid =

if bid > price then
value - price

else
0

The verification strategy

Consider bidder’s happiness function. . .
• First run: bidder bids b “ v (honest)

• Second run: bidder bids arbitrarily (maybe not honest)
• Verify: happiness in first run is higher than in second run

fixedprice p v v =
if v > p then

v - p
else

0
ě

fixedprice p v b =
if b > p then

v - p
else

0

This is a relational property

The verification strategy

Consider bidder’s happiness function. . .
• First run: bidder bids b “ v (honest)
• Second run: bidder bids arbitrarily (maybe not honest)

• Verify: happiness in first run is higher than in second run

fixedprice p v v =
if v > p then

v - p
else

0
ě

fixedprice p v b =
if b > p then

v - p
else

0

This is a relational property

The verification strategy

Consider bidder’s happiness function. . .
• First run: bidder bids b “ v (honest)
• Second run: bidder bids arbitrarily (maybe not honest)
• Verify: happiness in first run is higher than in second run

fixedprice p v v =
if v > p then

v - p
else

0
ě

fixedprice p v b =
if b > p then

v - p
else

0

This is a relational property

The verification strategy

Consider bidder’s happiness function. . .
• First run: bidder bids b “ v (honest)
• Second run: bidder bids arbitrarily (maybe not honest)
• Verify: happiness in first run is higher than in second run

fixedprice p v v =
if v > p then

v - p
else

0
ě

fixedprice p v b =
if b > p then

v - p
else

0

This is a relational property

The verification strategy

Consider bidder’s happiness function. . .
• First run: bidder bids b “ v (honest)
• Second run: bidder bids arbitrarily (maybe not honest)
• Verify: happiness in first run is higher than in second run

fixedprice p v v =
if v > p then

v - p
else

0
ě

fixedprice p v b =
if b > p then

v - p
else

0

This is a relational property

The verification strategy

Consider bidder’s happiness function. . .
• First run: bidder bids b “ v (honest)
• Second run: bidder bids arbitrarily (maybe not honest)
• Verify: happiness in first run is higher than in second run

fixedprice p v v =
if v > p then

v - p
else

0
ě

fixedprice p v b =
if b > p then

v - p
else

0

This is a relational property

Introducing HOARe2

A type system with relational refinement types

Refinement types

Judgment

Γ $ e : tx : T | φpxq u

type predicate

“e is a program of type T such that φpeq holds”

Refinement types

Judgment

Γ $ e : tx : T | φpxq u

type predicate

“e is a program of type T such that φpeq holds”

Refinement types

Judgment

Γ $ e : tx : T | φpxq u

type predicate

“e is a program of type T such that φpeq holds”

Refinement types

Judgment

Γ $ e : tx : T | φpxq u

type predicate

“e is a program of type T such that φpeq holds”

Refinement types

Example

Γ $ 3 : tx : Z | x ě 0u

“3 is a non-negative integer”

Refinement types

Example

Γ $ 3 : tx : Z | x ě 0u
“3 is a non-negative integer”

Relational Reasoning

Relational Judgment
Γ $ e :: tx :: T | φp xŸ, xŹ qu

φ mentions two runs of program e via xŸ and xŹ
Example

ty :: Z | yŸ ď yŹu $ e :: tx :: Z | xŸ ď xŹu

“If y increases, then e increases.”

Background
• First used in the RF* language, POPL 2014

Relational Reasoning

Relational Judgment
Γ $ e :: tx :: T | φp xŸ, xŹ qu

φ mentions two runs of program e via xŸ and xŹ
Example

ty :: Z | yŸ ď yŹu $ e :: tx :: Z | xŸ ď xŹu

“If y increases, then e increases.”

Background
• First used in the RF* language, POPL 2014

Relational Reasoning

Relational Judgment
Γ $ e :: tx :: T | φp xŸ, xŹ qu

φ mentions two runs of program e via xŸ and xŹ

Example

ty :: Z | yŸ ď yŹu $ e :: tx :: Z | xŸ ď xŹu

“If y increases, then e increases.”

Background
• First used in the RF* language, POPL 2014

Relational Reasoning

Relational Judgment
Γ $ e :: tx :: T | φp xŸ, xŹ qu

φ mentions two runs of program e via xŸ and xŹ
Example

ty :: Z | yŸ ď yŹu $ e :: tx :: Z | xŸ ď xŹu

“If y increases, then e increases.”

Background
• First used in the RF* language, POPL 2014

Relational Reasoning

Relational Judgment
Γ $ e :: tx :: T | φp xŸ, xŹ qu

φ mentions two runs of program e via xŸ and xŹ
Example

ty :: Z | yŸ ď yŹu $ e :: tx :: Z | xŸ ď xŹu

“If y increases, then e increases.”

Background
• First used in the RF* language, POPL 2014

Relational Reasoning

Relational Judgment
Γ $ e :: tx :: T | φp xŸ, xŹ qu

φ mentions two runs of program e via xŸ and xŹ
Example

ty :: Z | yŸ ď yŹu $ e :: tx :: Z | xŸ ď xŹu

“If y increases, then e increases.”

Background
• First used in the RF* language, POPL 2014

Typing truthfulness

Happiness function
fixedprice price value bid =

if bid > price then
value - price

else
0

Truthfulness in a type

tp :: R | pŸ “ pŹu (Fixed price)
Ñ tv :: R | vŸ “ vŹu (Bidder value fixed)
Ñ tb :: R | bŸ “ vŸu (Bid “ value on Ÿ run)
Ñ tu :: R | uŸ ě uŹu (Truthful)

Typing truthfulness

Happiness function
fixedprice price value bid =

if bid > price then
value - price

else
0

Truthfulness in a type

tp :: R | pŸ “ pŹu (Fixed price)
Ñ tv :: R | vŸ “ vŹu (Bidder value fixed)
Ñ tb :: R | bŸ “ vŸu (Bid “ value on Ÿ run)
Ñ tu :: R | uŸ ě uŹu (Truthful)

Typing truthfulness

Happiness function
fixedprice price value bid =

if bid > price then
value - price

else
0

Truthfulness in a type
tp :: R | pŸ “ pŹu (Fixed price)

Ñ tv :: R | vŸ “ vŹu (Bidder value fixed)
Ñ tb :: R | bŸ “ vŸu (Bid “ value on Ÿ run)
Ñ tu :: R | uŸ ě uŹu (Truthful)

Typing truthfulness

Happiness function
fixedprice price value bid =

if bid > price then
value - price

else
0

Truthfulness in a type
tp :: R | pŸ “ pŹu (Fixed price)
Ñ tv :: R | vŸ “ vŹu (Bidder value fixed)

Ñ tb :: R | bŸ “ vŸu (Bid “ value on Ÿ run)
Ñ tu :: R | uŸ ě uŹu (Truthful)

Typing truthfulness

Happiness function
fixedprice price value bid =

if bid > price then
value - price

else
0

Truthfulness in a type
tp :: R | pŸ “ pŹu (Fixed price)
Ñ tv :: R | vŸ “ vŹu (Bidder value fixed)
Ñ tb :: R | bŸ “ vŸu (Bid “ value on Ÿ run)

Ñ tu :: R | uŸ ě uŹu (Truthful)

Typing truthfulness

Happiness function
fixedprice price value bid =

if bid > price then
value - price

else
0

Truthfulness in a type
tp :: R | pŸ “ pŹu (Fixed price)
Ñ tv :: R | vŸ “ vŹu (Bidder value fixed)
Ñ tb :: R | bŸ “ vŸu (Bid “ value on Ÿ run)
Ñ tu :: R | uŸ ě uŹu (Truthful)

Adding in randomness

A more complex auction
• Unlimited supply of items (e.g., music files)
• Want to use fixedprice, but for what price?

Randomize!

Verify: happiness higher when bid is true value

on average

Adding in randomness

A more complex auction
• Unlimited supply of items (e.g., music files)
• Want to use fixedprice, but for what price?

Randomize! A more realistic example

A Mechanism Design story
Selling: one painting How much will you pay?

$10 million!

$50 million!

$10.1 million?
Pay: $10 million

$3

Who wins, and for how much?
15

Verify: happiness higher when bid is true value

on average

Adding in randomness

A more complex auction
• Unlimited supply of items (e.g., music files)
• Want to use fixedprice, but for what price?

Randomize! A more realistic example
g1 g2

Verify: happiness higher when bid is true value

on average

Adding in randomness

A more complex auction
• Unlimited supply of items (e.g., music files)
• Want to use fixedprice, but for what price?

Randomize! A more realistic example
g1 g2

optimal
price

optimal
price

Verify: happiness higher when bid is true value

on average

Adding in randomness

A more complex auction
• Unlimited supply of items (e.g., music files)
• Want to use fixedprice, but for what price?

Randomize! A more realistic example
g1 g2

optimal
price

optimal
price

p1 p2

Verify: happiness higher when bid is true value

on average

Adding in randomness

A more complex auction
• Unlimited supply of items (e.g., music files)
• Want to use fixedprice, but for what price?

Randomize! A more realistic example
g1 g2

optimal
price

optimal
price

p1 p2

Verify: happiness higher when bid is true value

on average

Adding in randomness

A more complex auction
• Unlimited supply of items (e.g., music files)
• Want to use fixedprice, but for what price?

Randomize! A more realistic example
g1 g2

optimal
price

optimal
price

p1 p2

Verify: happiness higher when bid is true value

on average

One key ingredient

Monotonicity of expectation
• (One) Distribution µ over A

• Two functions f1, f2 : A Ñ R with

f1 x ě f2 x for all x : A

• Then, fact about expected values:

Eµrf1s ě Eµrf2s

f1 bigger than
f2 on average

One key ingredient

Monotonicity of expectation
• (One) Distribution µ over A
• Two functions f1, f2 : A Ñ R with

f1 x ě f2 x for all x : A

• Then, fact about expected values:

Eµrf1s ě Eµrf2s

f1 bigger than
f2 on average

One key ingredient

Monotonicity of expectation
• (One) Distribution µ over A
• Two functions f1, f2 : A Ñ R with

f1 x ě f2 x for all x : A

• Then, fact about expected values:

Eµrf1s ě Eµrf2s

f1 bigger than
f2 on average

One key ingredient

Monotonicity of expectation
• (One) Distribution µ over A
• Two functions f1, f2 : A Ñ R with

f1 x ě f2 x for all x : A

• Then, fact about expected values:

Eµrf1s ě Eµrf2s

f1 bigger than
f2 on average

Extending HOARe2

Distributions and Higher-order refinements

Relating Distributions

Probabilistic programs
• Reason about two runs of a probabilistic program
• Use type of probability distributions

Typing distributions
Γ $ e :: M0,0rtx :: T | φpxŸ, xŹqus

“e is a distribution over T , with two runs related by φ ”

???

Relating Distributions

Probabilistic programs
• Reason about two runs of a probabilistic program
• Use type of probability distributions

Typing distributions
Γ $ e :: M0,0rtx :: T | φpxŸ, xŹqus

“e is a distribution over T , with two runs related by φ ”

???

Relating Distributions

Probabilistic programs
• Reason about two runs of a probabilistic program
• Use type of probability distributions

Typing distributions
Γ $ e :: M0,0rtx :: T | φpxŸ, xŹqus

“e is a distribution over T , with two runs related by φ ”

???

Relating Distributions

Probabilistic programs
• Reason about two runs of a probabilistic program
• Use type of probability distributions

Typing distributions
Γ $ e :: M0,0rtx :: T | φpxŸ, xŹqus

“e is a distribution over T , with two runs related by φ ”

???

Equivalence of Distributions

Γ $ e :: M0,0rtx :: T | φpxŸ, xŹqus

What does this mean?

• Convert relation φ to a relation φ# on distributions over T
• Two runs of e related by φ# (as distributions!)

Equivalence of Distributions

Example
Γ $ e :: M0,0rtx :: T | xŸ “ xŹ us

“e is a distribution over T that is identical in both runs”

Background
• Proposed by Barthe, Köpf, Olmedo, Zanella
• Generalizing 0, 0 to ε, δ models differential privacy

Our contribution
• Simplify and build into a type system

Equivalence of Distributions

Example
Γ $ e :: M0,0rtx :: T | xŸ “ xŹ us

“e is a distribution over T that is identical in both runs”

Background
• Proposed by Barthe, Köpf, Olmedo, Zanella
• Generalizing 0, 0 to ε, δ models differential privacy

Our contribution
• Simplify and build into a type system

Equivalence of Distributions

Example
Γ $ e :: M0,0rtx :: T | xŸ “ xŹ us

“e is a distribution over T that is identical in both runs”

Background
• Proposed by Barthe, Köpf, Olmedo, Zanella
• Generalizing 0, 0 to ε, δ models differential privacy

Our contribution
• Simplify and build into a type system

Equivalence of Distributions

Example
Γ $ e :: M0,0rtx :: T | xŸ “ xŹ us

“e is a distribution over T that is identical in both runs”

Background
• Proposed by Barthe, Köpf, Olmedo, Zanella
• Generalizing 0, 0 to ε, δ models differential privacy

Our contribution
• Simplify and build into a type system

Equivalence of Distributions

Example
Γ $ e :: M0,0rtx :: T | xŸ “ xŹ us

“e is a distribution over T that is identical in both runs”

Background
• Proposed by Barthe, Köpf, Olmedo, Zanella
• Generalizing 0, 0 to ε, δ models differential privacy

Our contribution
• Simplify and build into a type system

Higher-Order Refinements

Refinements on functions
Γ $ e :: tf :: T Ñ U | φu

“e is a function from T to U that satisfies φ”

Our contribution

• Consistency by carefully handling termination
• Show naïve treatment leads to inconsistency

Higher-Order Refinements

Refinements on functions
Γ $ e :: tf :: T Ñ U | φu

“e is a function from T to U that satisfies φ”

Our contribution

• Consistency by carefully handling termination
• Show naïve treatment leads to inconsistency

Higher-Order Refinements

Refinements on functions
Γ $ e :: tf :: T Ñ U | φu

“e is a function from T to U that satisfies φ”

Our contribution
• Consistency by carefully handling termination

• Show naïve treatment leads to inconsistency

Higher-Order Refinements

Refinements on functions
Γ $ e :: tf :: T Ñ U | φu

“e is a function from T to U that satisfies φ”

Our contribution
• Consistency by carefully handling termination
• Show naïve treatment leads to inconsistency

Expressing monotonicity of expectations

Want to show

E µ f1 ě E µ f2

In HOARe2, type E as. . .

E ::

M0,0rtx :: A | xŸ “ xŹus (Same distributions)

Ñ tf :: A Ñ R | @x . fŸ x ě fŹ xu (Higher-order)
Ñ te :: R | eŸ ě eŹu (Monotonic)

Expressing monotonicity of expectations

Want to show

E µ f1 ě E µ f2

In HOARe2, type E as. . .

E ::

M0,0rtx :: A | xŸ “ xŹus (Same distributions)
Ñ tf :: A Ñ R | @x . fŸ x ě fŹ xu (Higher-order)

Ñ te :: R | eŸ ě eŹu (Monotonic)

Expressing monotonicity of expectations

Want to show

E µ f1 ě E µ f2

In HOARe2, type E as. . .

E ::

M0,0rtx :: A | xŸ “ xŹus (Same distributions)
Ñ tf :: A Ñ R | @x . fŸ x ě fŹ xu (Higher-order)
Ñ te :: R | eŸ ě eŹu (Monotonic)

Expressing monotonicity of expectations

Want to show

E µ f1 ě E µ f2

In HOARe2, type E as. . .

E :: M0,0rtx :: A | xŸ “ xŹus (Same distributions)
Ñ tf :: A Ñ R | @x . fŸ x ě fŹ xu (Higher-order)
Ñ te :: R | eŸ ě eŹu (Monotonic)

Much more in the paper

Semantics
• Soundness of the system
• Requires termination

Implementation
• Automated, low annotation burden
• Why3 and SMT solvers

Translation
• Embedding of DFuzz, a language for differential privacy

More complex examples
• Verify differential privacy
• Verify MD properties beyond truthfulness

Takeaway points

Wrapping up

Four features, one system
• HOARe2: relational properties for randomized programs
• Combine features in a clean, usable way

Formal verification for mechanism design!
• Exciting, under-explored area for verification
• Tons of interesting properties, mechanisms
• Strong motivation besides (mere) correctness

Wrapping up

Four features, one system
• HOARe2: relational properties for randomized programs
• Combine features in a clean, usable way

Formal verification for mechanism design!
• Exciting, under-explored area for verification
• Tons of interesting properties, mechanisms
• Strong motivation besides (mere) correctness

Higher-Order Relational Refinement Types
for Mechanism Design and Differential Privacy

Gilles Barthe1, Marco Gaboardi2,
Emilio Jesús Gallego Arias3,4, Justin Hsu4,

Aaron Roth4, Pierre-Yves Strub1

1IMDEA Software, 2University of Dundee,
3CRI Mines–ParisTech, 4University of Pennsylvania

January 15th, 2015

