
Higher-Order Relational Refinement Types
for Mechanism Design and Differential Privacy

Gilles Barthe1, Marco Gaboardi2,
Emilio Jesús Gallego Arias3,4, Justin Hsu4,

Aaron Roth4, Pierre-Yves Strub1

1IMDEA Software, 2University of Dundee,
3CRI Mines–ParisTech, 4University of Pennsylvania

January 15th, 2015



The Application

Mechanism Design
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$10 million!
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$10.1 million?
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Who wins, and for how much?
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Algorithm design with strategic inputs

Rational agents
• Report data
• Care about output
• May lie, strategize

Goal: encourage “good” behavior
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Truthfulness

Designing auctions
• Bidders each have personal value v : R for the item

• Bidder’s happiness is function of price, v , whether they win
• Bidder reports a bid b : R to the mechanism

Property: agent always maximizes happiness with b “ v
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The verification strategy

Consider bidder’s happiness function. . .
• First run: bidder bids b “ v (honest)

• Second run: bidder bids arbitrarily (maybe not honest)
• Verify: happiness in first run is higher than in second run
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if v > p then
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else

0
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if b > p then

v - p
else

0

This is a relational property



The verification strategy

Consider bidder’s happiness function. . .
• First run: bidder bids b “ v (honest)
• Second run: bidder bids arbitrarily (maybe not honest)

• Verify: happiness in first run is higher than in second run

fixedprice p v v =
if v > p then

v - p
else

0
ě

fixedprice p v b =
if b > p then

v - p
else

0

This is a relational property



The verification strategy

Consider bidder’s happiness function. . .
• First run: bidder bids b “ v (honest)
• Second run: bidder bids arbitrarily (maybe not honest)
• Verify: happiness in first run is higher than in second run

fixedprice p v v =
if v > p then

v - p
else

0
ě

fixedprice p v b =
if b > p then

v - p
else

0

This is a relational property



The verification strategy

Consider bidder’s happiness function. . .
• First run: bidder bids b “ v (honest)
• Second run: bidder bids arbitrarily (maybe not honest)
• Verify: happiness in first run is higher than in second run

fixedprice p v v =
if v > p then

v - p
else

0
ě

fixedprice p v b =
if b > p then

v - p
else

0

This is a relational property



The verification strategy

Consider bidder’s happiness function. . .
• First run: bidder bids b “ v (honest)
• Second run: bidder bids arbitrarily (maybe not honest)
• Verify: happiness in first run is higher than in second run

fixedprice p v v =
if v > p then

v - p
else

0
ě

fixedprice p v b =
if b > p then

v - p
else

0

This is a relational property



The verification strategy

Consider bidder’s happiness function. . .
• First run: bidder bids b “ v (honest)
• Second run: bidder bids arbitrarily (maybe not honest)
• Verify: happiness in first run is higher than in second run

fixedprice p v v =
if v > p then

v - p
else

0
ě

fixedprice p v b =
if b > p then

v - p
else

0

This is a relational property



Introducing HOARe2

A type system with relational refinement types
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Relational Reasoning

Relational Judgment
Γ $ e :: tx :: T | φp xŸ, xŹ qu

φ mentions two runs of program e via xŸ and xŹ
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“If y increases, then e increases.”

Background
• First used in the RF* language, POPL 2014
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Happiness function
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Monotonicity of expectation
• (One) Distribution µ over A

• Two functions f1, f2 : A Ñ R with

f1 x ě f2 x for all x : A

• Then, fact about expected values:

Eµrf1s ě Eµrf2s

f1 bigger than
f2 on average
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Extending HOARe2

Distributions and Higher-order refinements



Relating Distributions

Probabilistic programs
• Reason about two runs of a probabilistic program
• Use type of probability distributions
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“e is a distribution over T , with two runs related by φ ”
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Equivalence of Distributions

Γ $ e :: M0,0rtx :: T | φpxŸ, xŹqus

What does this mean?

• Convert relation φ to a relation φ# on distributions over T
• Two runs of e related by φ# (as distributions!)
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• Generalizing 0, 0 to ε, δ models differential privacy

Our contribution
• Simplify and build into a type system
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“e is a function from T to U that satisfies φ”

Our contribution

• Consistency by carefully handling termination
• Show naïve treatment leads to inconsistency
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Much more in the paper

Semantics
• Soundness of the system
• Requires termination

Implementation
• Automated, low annotation burden
• Why3 and SMT solvers

Translation
• Embedding of DFuzz, a language for differential privacy

More complex examples
• Verify differential privacy
• Verify MD properties beyond truthfulness



Takeaway points



Wrapping up

Four features, one system
• HOARe2: relational properties for randomized programs
• Combine features in a clean, usable way

Formal verification for mechanism design!
• Exciting, under-explored area for verification
• Tons of interesting properties, mechanisms
• Strong motivation besides (mere) correctness
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