Higher-Order Relational Refinement Types for Mechanism Design and Differential Privacy

Gilles Barthe ${ }^{1}$, Marco Gaboardi ${ }^{2}$, Emilio Jesús Gallego Arias ${ }^{3,4}$, Justin Hsu ${ }^{4}$,
Aaron Roth ${ }^{4}$, Pierre-Yves Strub ${ }^{1}$
${ }^{1}$ IMDEA Software, ${ }^{2}$ University of Dundee,
${ }^{3}$ CRI Mines-ParisTech, ${ }^{4}$ University of Pennsylvania

January 15th, 2015

The Application

One painting for sale

One painting for sale

How much will you pay?

One painting for sale

How much will you pay?

\$10 million!
\$50 million!

One painting for sale

Who wins, and for how much?

How much will you pay?

Top bid pays top price?

- Simple rule
- Can encourage manipulation...

\$10 million!
\$50 million!
\$3

How much will you pay?

Top bid pays top price?

- Simple rule
- Can encourage manipulation...

\$10 million!
$\$ 50$ million!
$\$ 10.1$ million?
\$3

What is Mechanism Design?

Algorithm design with strategic inputs

What is Mechanism Design?

Algorithm design with strategic inputs

Rational agents

- Report data
- Care about output
- May lie, strategize

What is Mechanism Design?

Algorithm design with strategic inputs

Rational agents

- Report data
- Care about output
- May lie, strategize

Goal: encourage "good" behavior

Truthfulness

Designing auctions

- Bidders each have personal value $v: \mathbb{R}$ for the item

Truthfulness

Designing auctions

- Bidders each have personal value $v: \mathbb{R}$ for the item
- Bidder's happiness is function of price, v, whether they win

Truthfulness

Designing auctions

- Bidders each have personal value $v: \mathbb{R}$ for the item
- Bidder's happiness is function of price, v, whether they win
- Bidder reports a bid $b: \mathbb{R}$ to the mechanism

Truthfulness

Designing auctions

- Bidders each have personal value $v: \mathbb{R}$ for the item
- Bidder's happiness is function of price, v, whether they win
- Bidder reports a bid $b: \mathbb{R}$ to the mechanism

Property: agent always maximizes happiness with $b=v$

A (very) simple auction

Fixed price auction

- Given a fixed price price
- Bidder bids bid, buys item if higher than price

A (very) simple auction

Fixed price auction

- Given a fixed price price
- Bidder bids bid, buys item if higher than price

What is the happiness function for a bidder?

```
fixedprice price value bid =
    if bid > price then
        value - price
    else
        0
```


The verification strategy

Consider bidder's happiness function...

- First run: bidder bids $b=v$ (honest)

The verification strategy

Consider bidder's happiness function...

- First run: bidder bids $b=v$ (honest)
- Second run: bidder bids arbitrarily (maybe not honest)

The verification strategy

Consider bidder's happiness function. . .

- First run: bidder bids $b=v$ (honest)
- Second run: bidder bids arbitrarily (maybe not honest)
- Verify: happiness in first run is higher than in second run

The verification strategy

Consider bidder's happiness function. . .

- First run: bidder bids $b=v$ (honest)
- Second run: bidder bids arbitrarily (maybe not honest)
- Verify: happiness in first run is higher than in second run

The verification strategy

Consider bidder's happiness function. . .

- First run: bidder bids $b=v$ (honest)
- Second run: bidder bids arbitrarily (maybe not honest)
- Verify: happiness in first run is higher than in second run

```
fixedprice p v v =
    if v > p then
        v - p
    else
        O
```

```
fixedprice p v b =
    if \(b>p\) then
        \(v-p\)
    else
    0
```


The verification strategy

Consider bidder's happiness function...

- First run: bidder bids $b=v$ (honest)
- Second run: bidder bids arbitrarily (maybe not honest)
- Verify: happiness in first run is higher than in second run

```
fixedprice p v v =
    if v > p then
    v - p
    else
        0
```


This is a relational property

Introducing HOARe ${ }^{2}$

A type system with relational refinement types

Refinement types

Judgment

$$
\Gamma \vdash e:\{x: T \mid \phi(x)\}
$$

Refinement types

Judgment

 type$$
\Gamma \vdash e:\{x: T \mid \phi(x)\}
$$

Refinement types

Judgment

type

predicate

$$
\ulcorner\vdash e:\{x: T \mid \phi(x)\}
$$

Refinement types

Judgment

type

predicate

$$
\Gamma \vdash e:\{x: T \mid \phi(x)\}
$$

"e is a program of type T such that $\phi(e)$ holds"

Refinement types

Example

$$
\Gamma \vdash 3:\{x: \mathbb{Z} \mid x \geqslant 0\}
$$

Refinement types

Example

$$
\Gamma \vdash 3:\{x: \mathbb{Z} \mid x \geqslant 0\}
$$

"3 is a non-negative integer"

Relational Reasoning

Relational Judgment
 $$
\Gamma \vdash e::\left\{x:: T \mid \phi\left(x_{\triangleleft}, x_{\triangleright}\right)\right\}
$$

Relational Reasoning

Relational Judgment
 $$
\Gamma \vdash e::\left\{x:: T \mid \phi\left(x_{\triangleleft}, x_{\triangleright}\right)\right\}
$$

Relational Reasoning

Relational Judgment

$$
\Gamma \vdash e::\left\{x:: T \mid \phi\left(x_{\triangleleft}, x_{\triangleright}\right)\right\}
$$

ϕ mentions two runs of program e via x_{\triangleleft} and x_{\triangleright}

Relational Reasoning

Relational Judgment

$$
\Gamma \vdash e::\left\{x:: T \mid \phi\left(x_{\triangleleft}, x_{\triangleright}\right)\right\}
$$

ϕ mentions two runs of program e via x_{\triangleleft} and x_{\triangleright}
Example

$$
\left\{y:: \mathbb{Z} \mid y_{\triangleleft} \leqslant y_{\triangleright}\right\} \vdash e::\left\{x:: \mathbb{Z} \mid x_{\triangleleft} \leqslant x_{\triangleright}\right\}
$$

Relational Reasoning

Relational Judgment

$$
\Gamma \vdash e::\left\{x:: T \mid \phi\left(x_{\triangleleft}, x_{\triangleright}\right)\right\}
$$

ϕ mentions two runs of program e via x_{\triangleleft} and x_{\triangleright}
Example

$$
\left\{y:: \mathbb{Z} \mid y_{\triangleleft} \leqslant y_{\triangleright}\right\} \vdash e::\left\{x:: \mathbb{Z} \mid x_{\triangleleft} \leqslant x_{\triangleright}\right\}
$$

"If y increases, then e increases."

Relational Reasoning

Relational Judgment

$$
\Gamma \vdash e::\left\{x:: T \mid \phi\left(x_{\triangleleft}, x_{\triangleright}\right)\right\}
$$

ϕ mentions two runs of program e via x_{\triangleleft} and x_{\triangleright}
Example

$$
\begin{gathered}
\left\{y:: \mathbb{Z} \mid y_{\triangleleft} \leqslant y_{\triangleright}\right\} \vdash e::\left\{x:: \mathbb{Z} \mid x_{\triangleleft} \leqslant x_{\triangleright}\right\} \\
\text { "If } y \text { increases, then } e \text { increases." }
\end{gathered}
$$

Background

- First used in the RF* language, POPL 2014

Typing truthfulness

Happiness function

```
fixedprice price value bid =
    if bid > price then
        value - price
    else
        0
```


Typing truthfulness

Happiness function

```
fixedprice price value bid =
    if bid > price then
        value - price
    else
        0
```

Truthfulness in a type

Typing truthfulness

Happiness function

```
fixedprice price value bid =
    if bid > price then
        value - price
    else
        0
```

Truthfulness in a type

$$
\left\{p:: \mathbb{R} \mid p_{\triangleleft}=p_{\triangleright}\right\}
$$

(Fixed price)

Typing truthfulness

Happiness function

$$
\begin{aligned}
& \text { fixedprice price value bid = } \\
& \text { if bid }>\text { price then } \\
& \text { value - price } \\
& \text { else } \\
& 0
\end{aligned}
$$

Truthfulness in a type

$$
\begin{aligned}
& \left\{p:: \mathbb{R} \mid p_{\triangleleft}=p_{\triangleright}\right\} \\
& \quad \rightarrow\left\{v:: \mathbb{R} \mid v_{\triangleleft}=v_{\triangleright}\right\}
\end{aligned}
$$

(Fixed price)
(Bidder value fixed)

Typing truthfulness

Happiness function

```
fixedprice price value bid =
    if bid > price then
        value - price
    else
        0
```

Truthfulness in a type

$$
\begin{aligned}
& \left\{p:: \mathbb{R} \mid p_{\triangleleft}=p_{\triangleright}\right\} \\
& \rightarrow\left\{v:: \mathbb{R} \mid v_{\triangleleft}=v_{\triangleright}\right\} \\
& \rightarrow\left\{b:: \mathbb{R} \mid b_{\triangleleft}=v_{\triangleleft}\right\}
\end{aligned}
$$

(Fixed price)
(Bidder value fixed)
(Bid $=$ value on \triangleleft run)

Typing truthfulness

Happiness function

```
fixedprice price value bid =
    if bid > price then
        value - price
    else
        0
```

Truthfulness in a type

$$
\begin{aligned}
& \left\{p:: \mathbb{R} \mid p_{\triangleleft}=p_{\triangleright}\right\} \\
& \rightarrow\left\{v:: \mathbb{R} \mid v_{\triangleleft}=v_{\triangleright}\right\} \\
& \rightarrow\left\{b:: \mathbb{R} \mid b_{\triangleleft}=v_{\triangleleft}\right\} \\
& \rightarrow\left\{u:: \mathbb{R} \mid u_{\triangleleft} \geqslant u_{\triangleright}\right\}
\end{aligned}
$$

(Fixed price)
(Bidder value fixed)
(Bid $=$ value on \triangleleft run)
(Truthful)

Adding in randomness

A more complex auction

- Unlimited supply of items (e.g., music files)
- Want to use fixedprice, but for what price?

Adding in randomness

A more complex auction

- Unlimited supply of items (e.g., music files)
- Want to use fixedprice, but for what price?

Randomize!

Adding in randomness

A more complex auction

- Unlimited supply of items (e.g., music files)
- Want to use fixedprice, but for what price?

Randomize!

Adding in randomness

A more complex auction

- Unlimited supply of items (e.g., music files)
- Want to use fixedprice, but for what price?

Randomize!

Adding in randomness

A more complex auction

- Unlimited supply of items (e.g., music files)
- Want to use fixedprice, but for what price?

Randomize!

Adding in randomness

A more complex auction

- Unlimited supply of items (e.g., music files)
- Want to use fixedprice, but for what price?

Randomize!

Verify: happiness higher when bid is true value

Adding in randomness

A more complex auction

- Unlimited supply of items (e.g., music files)
- Want to use fixedprice, but for what price?

Randomize!
on average

Verify: happiness higher when bid is true value

One key ingredient

Monotonicity of expectation

- (One) Distribution μ over A

One key ingredient

Monotonicity of expectation

- (One) Distribution μ over A
- Two functions $f_{1}, f_{2}: A \rightarrow \mathbb{R}$ with

$$
f_{1} x \geqslant f_{2} x \quad \text { for all } x: A
$$

One key ingredient

Monotonicity of expectation

- (One) Distribution μ over A
- Two functions $f_{1}, f_{2}: A \rightarrow \mathbb{R}$ with

$$
f_{1} x \geqslant f_{2} x \quad \text { for all } x: A
$$

- Then, fact about expected values:

$$
\mathbb{E}_{\mu}\left[f_{1}\right] \geqslant \mathbb{E}_{\mu}\left[f_{2}\right]
$$

One key ingredient

Monotonicity of expectation

- (One) Distribution μ over A
- Two functions $f_{1}, f_{2}: A \rightarrow \mathbb{R}$ with

$$
f_{1} x \geqslant f_{2} x \quad \text { for all } x: A
$$

- Then, fact about expected values:

$$
\mathbb{E}_{\mu}\left[f_{1}\right] \geqslant \mathbb{E}_{\mu}\left[f_{2}\right]
$$

f_{1} bigger than
f_{2} on average

Extending HOARe ${ }^{2}$

Distributions and Higher-order refinements

Relating Distributions

Probabilistic programs

- Reason about two runs of a probabilistic program
- Use type of probability distributions

Relating Distributions

Probabilistic programs

- Reason about two runs of a probabilistic program
- Use type of probability distributions

Typing distributions

$$
\Gamma \vdash e:: \mathfrak{M}_{0,0}\left[\left\{x:: T \mid \phi\left(x_{\triangleleft}, x_{\triangleright}\right)\right\}\right]
$$

Relating Distributions

Probabilistic programs

- Reason about two runs of a probabilistic program
- Use type of probability distributions

Typing distributions

$\Gamma \vdash e:: \mathfrak{M}_{0,0}\left[\left\{x:: T \mid \phi\left(x_{\triangleleft}, x_{\triangleright}\right)\right\}\right]$
" e is a distribution over T, with two runs related by ϕ

Relating Distributions

Probabilistic programs

- Reason about two runs of a probabilistic program
- Use type of probability distributions

Typing distributions

$\Gamma \vdash e:: \mathfrak{M}_{0,0}\left[\left\{x:: T \mid \phi\left(x_{\triangleleft}, x_{\triangleright}\right)\right\}\right]$
"e is a distribution over T, with two runs related by ϕ

Equivalence of Distributions

$\Gamma \vdash e:: \mathfrak{M}_{0,0}\left[\left\{x:: T \mid \phi\left(x_{\triangleleft}, x_{\triangleright}\right)\right\}\right]$

What does this mean?

- Convert relation ϕ to a relation $\phi^{\#}$ on distributions over T
- Two runs of e related by $\phi^{\#}$ (as distributions!)

Equivalence of Distributions

Example

$$
\Gamma \vdash e:: \mathfrak{M}_{0,0}\left[\left\{x:: T \mid x_{\triangleleft}=x_{\triangleright}\right\}\right]
$$

Equivalence of Distributions

Example

$$
\Gamma \vdash e:: \mathfrak{M}_{0,0}\left[\left\{x:: T \mid x_{\triangleleft}=x_{\triangleright}\right\}\right]
$$

Equivalence of Distributions

Example

$\Gamma \vdash e:: \mathfrak{M}_{0,0}\left[\left\{x:: T \mid x_{\triangleleft}=x_{\triangleright}\right\}\right]$
" e is a distribution over T that is identical in both runs"

Equivalence of Distributions

Example

$\Gamma \vdash e:: \mathfrak{M}_{0,0}\left[\left\{x:: T \mid x_{\triangleleft}=x_{\triangleright}\right\}\right]$
" e is a distribution over T that is identical in both runs"
Background

- Proposed by Barthe, Köpf, Olmedo, Zanella
- Generalizing 0,0 to ε, δ models differential privacy

Equivalence of Distributions

Example

$\Gamma \vdash e:: \mathfrak{M}_{0,0}\left[\left\{x:: T \mid x_{\triangleleft}=x_{\triangleright}\right\}\right]$
" e is a distribution over T that is identical in both runs"
Background

- Proposed by Barthe, Köpf, Olmedo, Zanella
- Generalizing 0,0 to ε, δ models differential privacy

Our contribution

- Simplify and build into a type system

Refinements on functions

$$
\Gamma \vdash e::\{f:: T \rightarrow U \mid \phi\}
$$

Refinements on functions

$$
\Gamma \vdash e::\{f:: T \rightarrow U \mid \phi\}
$$

" e is a function from T to U that satisfies ϕ "

Refinements on functions

$$
\Gamma \vdash e::\{f:: T \rightarrow U \mid \phi\}
$$

" e is a function from T to U that satisfies ϕ "
Our contribution

- Consistency by carefully handling termination

Refinements on functions

$$
\Gamma \vdash e::\{f:: T \rightarrow U \mid \phi\}
$$

" e is a function from T to U that satisfies ϕ "
Our contribution

- Consistency by carefully handling termination
- Show naïve treatment leads to inconsistency

Expressing monotonicity of expectations

Want to show

$$
\mathbb{E} \mu f_{1} \geqslant \mathbb{E} \mu f_{2}
$$

In HOARe ${ }^{2}$, type \mathbb{E} as...

$$
\mathfrak{M}_{0,0}\left[\left\{x:: A \mid x_{\triangleleft}=x_{\triangleright}\right\}\right]
$$

(Same distributions)

Expressing monotonicity of expectations

Want to show

$$
\mathbb{E} \mu f_{1} \geqslant \mathbb{E} \mu f_{2}
$$

In HOARe ${ }^{2}$, type \mathbb{E} as...

$$
\begin{aligned}
& \mathfrak{M}_{0,0}\left[\left\{x:: A \mid x_{\triangleleft}=x_{\triangleright}\right\}\right] \\
& \quad \rightarrow\left\{f:: A \rightarrow \mathbb{R} \mid \forall x . f_{\triangleleft} x \geqslant f_{\triangleright} x\right\}
\end{aligned}
$$

(Same distributions)
(Higher-order)

Expressing monotonicity of expectations

Want to show

$$
\mathbb{E} \mu f_{1} \geqslant \mathbb{E} \mu f_{2}
$$

In HOARe ${ }^{2}$, type \mathbb{E} as...

$$
\begin{aligned}
& \mathfrak{M}_{0,0}\left[\left\{x:: A \mid x_{\triangleleft}=x_{\triangleright}\right\}\right] \\
& \rightarrow\left\{f:: A \rightarrow \mathbb{R} \mid \forall x . f_{\triangleleft} x \geqslant f_{\triangleright} x\right\} \\
& \rightarrow\left\{e:: \mathbb{R} \mid e_{\triangleleft} \geqslant e_{\triangleright}\right\}
\end{aligned}
$$

(Same distributions)
(Higher-order)
(Monotonic)

Expressing monotonicity of expectations

Want to show

$$
\mathbb{E} \mu f_{1} \geqslant \mathbb{E} \mu f_{2}
$$

In HOARe ${ }^{2}$, type \mathbb{E} as...

$$
\begin{aligned}
\mathbb{E}:: & \mathfrak{M}_{0,0}\left[\left\{x:: A \mid x_{\triangleleft}=x_{\triangleright}\right\}\right] \\
& \rightarrow\left\{f:: A \rightarrow \mathbb{R} \mid \forall x . f_{\triangleleft} x \geqslant f_{\triangleright} x\right\} \\
& \rightarrow\left\{e:: \mathbb{R} \mid e_{\triangleleft} \geqslant e_{\triangleright}\right\}
\end{aligned}
$$

(Same distributions)
(Higher-order)
(Monotonic)

Much more in the paper

Semantics

- Soundness of the system
- Requires termination

Implementation

- Automated, low annotation burden
- Why3 and SMT solvers

Translation

- Embedding of DFuzz, a language for differential privacy

More complex examples

- Verify differential privacy
- Verify MD properties beyond truthfulness

Takeaway points

Four features, one system

- HOARe ${ }^{2}$: relational properties for randomized programs
- Combine features in a clean, usable way

Wrapping up

Four features, one system

- HOARe ${ }^{2}$: relational properties for randomized programs
- Combine features in a clean, usable way

Formal verification for mechanism design!

- Exciting, under-explored area for verification
- Tons of interesting properties, mechanisms
- Strong motivation besides (mere) correctness

Higher-Order Relational Refinement Types for Mechanism Design and Differential Privacy

Gilles Barthe ${ }^{1}$, Marco Gaboardi ${ }^{2}$, Emilio Jesús Gallego Arias ${ }^{3,4}$, Justin Hsu ${ }^{4}$,
Aaron Roth ${ }^{4}$, Pierre-Yves Strub ${ }^{1}$
${ }^{1}$ IMDEA Software, ${ }^{2}$ University of Dundee,
${ }^{3}$ CRI Mines-ParisTech, ${ }^{4}$ University of Pennsylvania

January 15th, 2015

