Higher-Order Relational Refinement Types for Mechanism Design and Differential Privacy

Gilles Barthe¹, Marco Gaboardi², Emilio Jesús Gallego Arias^{3,4}, Justin Hsu⁴, Aaron Roth⁴, Pierre-Yves Strub¹

¹IMDEA Software, ²University of Dundee, ³CRI Mines–ParisTech, ⁴University of Pennsylvania

January 15th, 2015

The Application

Mechanism Design

One painting for sale

One painting for sale

One painting for sale

\$10 million!

How much will you pay?

\$50 million!

\$3

One painting for sale

\$10 million!

How much will you pay?

\$50 million!

\$3

Who wins, and for how much?

How much will you pay?

Top bid pays top price?

- Simple rule
- Can encourage manipulation...

\$10 million!

\$50 million!

\$3

How much will you pay?

Top bid pays top price?

- Simple rule
- Can encourage manipulation...

\$10 million!

\$50 million! \$10.1 million?

\$3

What is Mechanism Design?

Algorithm design with strategic inputs

What is Mechanism Design?

Algorithm design with strategic inputs

Rational agents

- Report data
- Care about output
- May lie, strategize

What is Mechanism Design?

Algorithm design with strategic inputs

Rational agents

- Report data
- Care about output
- May lie, strategize

Goal: encourage "good" behavior

Designing auctions

• Bidders each have personal value $v : \mathbb{R}$ for the item

Designing auctions

- Bidders each have personal value $v : \mathbb{R}$ for the item
- Bidder's happiness is function of price, v, whether they win

Designing auctions

- Bidders each have personal value $v : \mathbb{R}$ for the item
- Bidder's happiness is function of price, v, whether they win
- Bidder reports a bid $b : \mathbb{R}$ to the mechanism

Designing auctions

- Bidders each have personal value $v : \mathbb{R}$ for the item
- Bidder's happiness is function of price, v, whether they win
- Bidder reports a bid $b : \mathbb{R}$ to the mechanism

Property: agent always maximizes happiness with b = v

A (very) simple auction

Fixed price auction

- Given a fixed price price
- Bidder bids bid, buys item if higher than price

A (very) simple auction

Fixed price auction

- Given a fixed price price
- Bidder bids bid, buys item if higher than price

```
What is the happiness function for a bidder?
```

```
fixedprice price value bid =
if bid > price then
  value - price
else
0
```

Consider bidder's happiness function...

• First run: bidder bids b = v (honest)

- First run: bidder bids b = v (honest)
- Second run: bidder bids arbitrarily (maybe not honest)

- First run: bidder bids b = v (honest)
- Second run: bidder bids arbitrarily (maybe not honest)
- Verify: happiness in first run is higher than in second run

- First run: bidder bids b = v (honest)
- Second run: bidder bids arbitrarily (maybe not honest)
- Verify: happiness in first run is higher than in second run

- First run: bidder bids b = v (honest)
- Second run: bidder bids arbitrarily (maybe not honest)
- · Verify: happiness in first run is higher than in second run

Consider bidder's happiness function...

- First run: bidder bids b = v (honest)
- Second run: bidder bids arbitrarily (maybe not honest)
- Verify: happiness in first run is higher than in second run

This is a relational property

Introducing HOARe²

A type system with relational refinement types

Judgment $\Gamma \vdash e : \{x : T \mid \phi(x)\}$

"e is a program of type T such that $\phi(e)$ holds"

Example $\Gamma \vdash 3 : \{x : \mathbb{Z} \mid x \ge 0\}$

Example $\Gamma \vdash 3 : \{x : \mathbb{Z} \mid x \ge 0\}$

"3 is a non-negative integer"

Relational Judgment

$\Gamma \vdash e :: \{ x :: T \mid \phi(x_{\triangleleft}, x_{\rhd}) \}$

Relational Judgment

$$\Gamma \vdash e :: \{ x :: T \mid \phi(x_{\triangleleft}, x_{\triangleright}) \}$$

Relational Judgment

$\Gamma \vdash e :: \{ x :: T \mid \phi(x_{\triangleleft}, x_{\triangleright}) \}$

 ϕ mentions two runs of program e via x_{\lhd} and x_{\rhd}

Relational Judgment

$$\Gamma \vdash e :: \{ x :: T \mid \phi(x_{\triangleleft}, x_{\triangleright}) \}$$

 ϕ mentions two runs of program e via x_{\triangleleft} and x_{\triangleright} Example

$$\{y :: \mathbb{Z} \mid y_{\lhd} \leqslant y_{\rhd}\} \vdash e :: \{x :: \mathbb{Z} \mid x_{\lhd} \leqslant x_{\rhd}\}$$

Relational Judgment

$$\Gamma \vdash e :: \{ x :: T \mid \phi(x_{\triangleleft}, x_{\triangleright}) \}$$

 ϕ mentions two runs of program e via x_{\triangleleft} and x_{\triangleright} Example

$$\{y :: \mathbb{Z} \mid y_{\lhd} \leqslant y_{\rhd}\} \vdash e :: \{x :: \mathbb{Z} \mid x_{\lhd} \leqslant x_{\rhd}\}$$

"If y increases, then e increases."

Relational Judgment

$$\Gamma \vdash e :: \{ x :: T \mid \phi(x_{\triangleleft}, x_{\triangleright}) \}$$

 ϕ mentions two runs of program e via x_{\triangleleft} and x_{\triangleright} Example

$$\{y :: \mathbb{Z} \mid y_{\lhd} \leqslant y_{\rhd}\} \vdash e :: \{x :: \mathbb{Z} \mid x_{\lhd} \leqslant x_{\rhd}\}$$

"If y increases, then e increases."

Background

First used in the RF* language, POPL 2014
```
Happiness function
```

```
fixedprice price value bid =
    if bid > price then
      value - price
    else
      0
```

```
Happiness function
```

```
fixedprice price value bid =
    if bid > price then
      value - price
    else
      0
```

```
Happiness function
```

```
fixedprice price value bid =
    if bid > price then
      value - price
    else
      0
```

Truthfulness in a type

$$\{p::\mathbb{R}\mid p_{\lhd}=p_{\rhd}\}$$

(Fixed price)

Happiness function

```
fixedprice price value bid =
    if bid > price then
      value - price
    else
      0
```

$$\{p :: \mathbb{R} \mid p_{\triangleleft} = p_{\triangleright} \}$$
 (Fixed price)

$$\rightarrow \{v :: \mathbb{R} \mid v_{\triangleleft} = v_{\triangleright} \}$$
 (Bidder value fixed)

Happiness function

```
fixedprice price value bid =
    if bid > price then
      value - price
    else
      0
```

$$\{p :: \mathbb{R} \mid p_{\lhd} = p_{\triangleright}\}$$
 (Fixed price)

$$\rightarrow \{v :: \mathbb{R} \mid v_{\lhd} = v_{\triangleright}\}$$
 (Bidder value fixed)

$$\rightarrow \{b :: \mathbb{R} \mid b_{\lhd} = v_{\lhd}\}$$
 (Bid = value on \lhd run)

Happiness function

```
fixedprice price value bid =
  if bid > price then
    value - price
  else
    0
```

$$\{p :: \mathbb{R} \mid p_{\triangleleft} = p_{\triangleright}\}$$
 (Fixed price)

$$\rightarrow \{v :: \mathbb{R} \mid v_{\triangleleft} = v_{\triangleright}\}$$
 (Bidder value fixed)

$$\rightarrow \{b :: \mathbb{R} \mid b_{\triangleleft} = v_{\triangleleft}\}$$
 (Bid = value on \triangleleft run)

$$\rightarrow \{u :: \mathbb{R} \mid u_{\triangleleft} \ge u_{\triangleright}\}$$
 (Truthful)

A more complex auction

- Unlimited supply of items (e.g., music files)
- Want to use fixedprice, but for what price?

A more complex auction

- Unlimited supply of items (e.g., music files)
- Want to use fixedprice, but for what price?

A more complex auction

- Unlimited supply of items (e.g., music files)
- Want to use fixedprice, but for what price?

Randomize!

A more complex auction

- Unlimited supply of items (e.g., music files)
- Want to use fixedprice, but for what price?

Randomize!

optimal price

A more complex auction

- Unlimited supply of items (e.g., music files)
- Want to use fixedprice, but for what price?

Randomize!

A more complex auction

- Unlimited supply of items (e.g., music files)
- Want to use fixedprice, but for what price?

Randomize!

Verify: happiness higher when bid is true value

A more complex auction

- Unlimited supply of items (e.g., music files)
- Want to use fixedprice, but for what price?

Monotonicity of expectation

• (One) Distribution μ over A

Since 1908 99 + % PURE MONOSODIUM GLUTAMATE NET WEIGHT 10 KG SELECTION

Monotonicity of expectation

- (One) Distribution μ over A
- Two functions $f_1, f_2 : A \to \mathbb{R}$ with

$f_1 x \ge f_2 x$ for all x : A

Monotonicity of expectation

- (One) Distribution μ over A
- Two functions $f_1, f_2 : A \to \mathbb{R}$ with

$$f_1 x \ge f_2 x$$
 for all $x : A$

• Then, fact about expected values:

 $\mathbb{E}_{\mu}[f_1] \geqslant \mathbb{E}_{\mu}[f_2]$

Monotonicity of expectation

- (One) Distribution μ over A
- Two functions $f_1, f_2 : A \to \mathbb{R}$ with

$$f_1 x \ge f_2 x$$
 for all $x : A$

• Then, fact about expected values:

Extending HOARe²

Distributions and Higher-order refinements

Probabilistic programs

- Reason about two runs of a probabilistic program
- Use type of probability distributions

Probabilistic programs

- Reason about two runs of a probabilistic program
- Use type of probability distributions

Typing distributions $\Gamma \vdash e :: \mathfrak{M}_{0,0}[\{x :: T \mid \phi(x_{\triangleleft}, x_{\triangleright})\}]$

Probabilistic programs

- Reason about two runs of a probabilistic program
- Use type of probability distributions

Typing distributions $\Gamma \vdash e :: \mathfrak{M}_{0,0}[\{x :: T \mid \phi(x_{\triangleleft}, x_{\triangleright})\}]$

"e is a distribution over ${\cal T}$, with two runs related by ϕ "

???

Probabilistic programs

- Reason about two runs of a probabilistic program
- Use type of probability distributions

Typing distributions $\Gamma \vdash e :: \mathfrak{M}_{0,0}[\{x :: T \mid \phi(x_{\triangleleft}, x_{\rhd})\}]$ "e is a distribution over T, with two runs related by ϕ "

$\Gamma \vdash e :: \mathfrak{M}_{0,0}[\{x :: T \mid \phi(x_{\triangleleft}, x_{\rhd})\}]$

What does this mean?

- Convert relation ϕ to a relation $\phi^{\#}$ on distributions over T
- Two runs of e related by $\phi^{\#}$ (as distributions!)

Example

$\Gamma \vdash e :: \mathfrak{M}_{0,0}[\{x :: T \mid x_{\triangleleft} = x_{\rhd}\}]$

Example

$\Gamma \vdash e :: \mathfrak{M}_{0,0}[\{x :: T \mid x_{\triangleleft} = x_{\triangleright}\}]$

Example

$\Gamma \vdash e :: \mathfrak{M}_{0,0}[\{x :: T \mid x_{\triangleleft} = x_{\triangleright}\}]$

"e is a distribution over T that is identical in both runs"

Example

$\Gamma \vdash e :: \mathfrak{M}_{0,0}[\{x :: T \mid x_{\triangleleft} = x_{\triangleright}\}]$

"e is a distribution over T that is identical in both runs"

Background

- Proposed by Barthe, Köpf, Olmedo, Zanella
- Generalizing 0,0 to ε, δ models differential privacy

Example

$\Gamma \vdash e :: \mathfrak{M}_{0,0}[\{x :: T \mid x_{\triangleleft} = x_{\triangleright}\}]$

"e is a distribution over T that is identical in both runs"

Background

- Proposed by Barthe, Köpf, Olmedo, Zanella
- Generalizing 0,0 to ε,δ models differential privacy

Our contribution

Simplify and build into a type system

Refinements on functions $\Gamma \vdash e :: \{f :: T \rightarrow U \mid \phi\}$

Refinements on functions $\Gamma \vdash e :: \{f :: T \rightarrow U \mid \phi\}$

"e is a function from T to U that satisfies ϕ "

Refinements on functions

$$\Gamma \vdash e :: \{f :: T \to U \mid \phi\}$$

"e is a function from T to U that satisfies ϕ "

Our contribution

Consistency by carefully handling termination

Refinements on functions

$$\Gamma \vdash e :: \{f :: T \to U \mid \phi\}$$

"e is a function from T to U that satisfies ϕ "

Our contribution

- Consistency by carefully handling termination
- Show naïve treatment leads to inconsistency

Want to show

 $\mathbb{E} \ \mu \ f_1 \geqslant \mathbb{E} \ \mu \ f_2$

In HOARe², type $\mathbb E$ as...

 $\mathfrak{M}_{0,0}[\{x :: A \mid x_{\lhd} = x_{\rhd}\}]$ (Same distributions)

Want to show

$$\mathbb{E} \ \mu \ f_1 \geqslant \mathbb{E} \ \mu \ f_2$$

In HOARe², type $\mathbb E$ as...

 $\mathfrak{M}_{0,0}[\{x :: A \mid x_{\triangleleft} = x_{\triangleright}\}] \qquad (\text{Same distributions}) \\ \rightarrow \{f :: A \rightarrow \mathbb{R} \mid \forall x. \ f_{\triangleleft} \ x \ge f_{\triangleright} \ x\} \qquad (\text{Higher-order})$

Want to show

$$\mathbb{E} \ \mu \ f_1 \geqslant \mathbb{E} \ \mu \ f_2$$

In HOARe², type $\mathbb E$ as...

 $\begin{aligned} \mathfrak{M}_{0,0}[\{x :: A \mid x_{\lhd} = x_{\rhd}\}] & (\text{Same distributions}) \\ \to \{f :: A \to \mathbb{R} \mid \forall x. \ f_{\lhd} \ x \ge f_{\rhd} \ x\} & (\text{Higher-order}) \\ \to \{e :: \mathbb{R} \mid e_{\lhd} \ge e_{\rhd}\} & (\text{Monotonic}) \end{aligned}$

Want to show

$$\mathbb{E} \ \mu \ f_1 \geqslant \mathbb{E} \ \mu \ f_2$$

In HOARe², type $\mathbb E$ as...

$$\begin{split} \mathbb{E} :: \mathfrak{M}_{0,0}[\{x :: A \mid x_{\lhd} = x_{\rhd}\}] & (\text{Same distributions}) \\ \to \{f :: A \to \mathbb{R} \mid \forall x. \ f_{\lhd} \ x \ge f_{\rhd} \ x\} & (\text{Higher-order}) \\ \to \{e :: \mathbb{R} \mid e_{\lhd} \ge e_{\rhd}\} & (\text{Monotonic}) \end{split}$$
Much more in the paper

Semantics

- Soundness of the system
- Requires termination

Implementation

- Automated, low annotation burden
- Why3 and SMT solvers

Translation

• Embedding of DFuzz, a language for differential privacy

More complex examples

- Verify differential privacy
- Verify MD properties beyond truthfulness

Takeaway points

Wrapping up

Four features, one system

- HOARe²: relational properties for randomized programs
- Combine features in a clean, usable way

Wrapping up

Four features, one system

- HOARe²: relational properties for randomized programs
- Combine features in a clean, usable way

Formal verification for mechanism design!

- Exciting, under-explored area for verification
- Tons of interesting properties, mechanisms
- Strong motivation besides (mere) correctness

Higher-Order Relational Refinement Types for Mechanism Design and Differential Privacy

Gilles Barthe¹, Marco Gaboardi², Emilio Jesús Gallego Arias^{3,4}, Justin Hsu⁴, Aaron Roth⁴, Pierre-Yves Strub¹

¹IMDEA Software, ²University of Dundee, ³CRI Mines–ParisTech, ⁴University of Pennsylvania

January 15th, 2015