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Day 1: Introducing Probabilistic Programs
I Motivations and key questions
I Mathematical preliminaries

Day 2: First-Order Programs 1
I Probabilistic While language, monadic semantics
I Weakest pre-expectation calculus

Day 3: First-Order Programs 2
I Probabilistic While language, transformer semantics
I Probabilistic separation logic

Day 4: Higher-Order Programs
I Type system: probability monad
I Type system: probabilistic PCF



Please ask questions!

OPLSS Slack: #probabilistic
I I will check in periodically for o�ine questions

Zoom chat/raise hand
I Thanks to Breandan Considine for moderating!

We don’t have to get through everything
I We will have to skip over many topics, anyways

Requests are welcome!
I Tell me if you’re curious about something not on the menu



Probabilistic Programs
Are Everywhere!



Executable code: Randomized Algorithms

Better performance in exchange for chance of failure
I Check if n× n matrices A ·B = C: O(n2.37...) operations
I Freivalds’ randomized algorithm: O(n2) operations

Improve performance against “worst-case” inputs
I Quicksort: if input is worst-case, O(n2) comparisons
I Randomized quicksort: O(n logn) comparisons on average

Other benefits
I Randomized algorithms can be simpler to describe
I Sometimes: more e�cient than deterministic algorithms
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Executable code: Security and Privacy

Cryptography
I Generate secrets the adversary doesn’t know
I Example: draw encryption/decryption keys randomly

Privacy
I Add random noise to blur private data
I Example: di�erential privacy
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Executable code: Randomized Testing

Randomly generate inputs to a program
I Search a huge space of potential inputs
I Avoid human bias in selecting testcases

Very common strategy for testing programs
I Property-based testing (e.g., QuickCheck)
I Fuzz testing (e.g., AFL, OSS-Fuzz)
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Modeling tool: Representing Uncertainty

Think of uncertain things as drawn from a distribution
I Example: whether a network link fails or not
I Example: tomorrow’s temperature

Di�erent motivation from executable code
I Aim: model some real-world data generation process
I Less important: generating data from this distribution
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Modeling tool: Fitting Empirical Data

Foundation of machine learning
I Human designs a model of how data is generated, with

unknown parameters
I Based on data collected from the world, infer parameters

of the model

Example: learning the bias of a coin
I Boolean data generated by coin flips
I Unknown parameter: bias of the coin
I Flip coin many times, try to infer the bias
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Modeling tool: Approximate Computing

Computing on unreliable hardware
I Hardware operations may occasionally give wrong answer
I Motivation: lower power usage if we allow more errors

Model failures as drawn from a distribution
I Run hardware many times, estimate failures rate
I Randomized program describes approximate computing
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Main Questions
and Research Directions



What to know about probabilistic programs?

Four general categories
I Semantics
I Verification
I Automation
I Implementation



Semantics: what do programs mean mathematically?

Specify what programs are supposed to do
I Programs may generate complicated distributions
I Desired behavior of programs may not be obvious

Common tools
I Denotational semantics: define program behavior using

mathematical concepts from probability theory
(distributions, measures, . . . )

I Operational semantics: define how programs step



Verification: how to prove programs correct?

Design ways to prove probabilistic program properties
I Target properties can be highly mathematical, subtle
I Goal: reusable techniques to prove these properties

Common tools
I Low-level: interactive theorem provers (e.g., Coq, Agda)
I Higher-level: type systems, Hoare logic, and custom logics



Automation: how to analyze programs automatically?

Prove correctness without human help
I Benefit: don’t need any human expertise to run
I Drawback: less expressive than manual techniques

Common tools
I Probabilistic model checking (e.g., PRISM, Storm)
I Abstract interpretation



Implementation: how to run programs e�ciently?

Executing a probabilistic program is not always easy
I Especially: in languages supporting conditioning
I Algorithmic insights to execute probabilistic programs

Common tools: sampling algorithms
I Markov Chain Monte Carlo (MCMC)
I Sequential Monte Carlo (SMC)



Important division: conditioning or not?

No conditioning in language
I Semantics is more straightforward
I Easier to implement; closer to executable code
I Verification and automation are more tractable

Yes conditioning in language
I Semantics is more complicated
I Di�cult to implement e�ciently, but useful for modeling
I Verification and automation are very di�cult
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Our focus, and the plan (can’t cover everything!)

Primary focus: verification
I Main course goal: reasoning about probabilistic programs

Secondary focus: semantics
I Introduce a few semantics for probabilistic languages

Programs without conditioning
I Simpler, and covers many practical applications
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What does semantics have to do with verification?

Semantics is the foundation of verification
I Semantics: definition of program behavior
I Verification: prove program behavior satisfies property

Semantics can make properties easier or harder to verify
I Probabilistic programs: several natural semantics
I Choice of semantics strongly a�ects verification
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Verifying Probabilistic Programs
What Are the Challenges?



Traditional verification: big code, general proofs
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Randomized programs: small code, specialized proofs

Small code
I Usually: on the order of 10s of lines of code
I 100-line algorithm: unthinkable (and un-analyzable)

Specialized proofs
I Often: apply combination of known and novel techniques
I Proofs (and techniques) can be research contributions



Simple programs, but complex program states

Programs manipulate distributions over program states
I Each state has a numeric probability
I Probabilities of di�erent states may be totally unrelated

Example: program with 10 Boolean variables
I Non-probabilistic programs: 210 = 1024 possible states
I Probabilistic programs: each state also has a probability
I 1024 possible states versus uncountably many states
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Properties are fundamentally quantitative

Key probabilistic properties often involve...
I Probabilities of events (e.g., returning wrong result)
I Average value of randomized quantities (e.g., running time)

Can’t just “ignore” probabilities
I Treat probabilities as zero or non-zero (non-determinism)
I Simplifies verification, but can’t prove most properties
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Needed: good abstractions for probabilistic programs

Discard unneeded aspects of a program’s state/behavior

— Andy Baio, Jay Maisel



Needed: good abstractions for probabilistic programs

Discard unneeded aspects of a program’s state/behavior

— Andy Baio, Jay Maisel



What do we want from these abstractions?

Desired features
1. Retain enough info to show target probabilistic properties

2. Be easy to establish (or at least not too di�cult)
3. Behave well under program composition
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Mathematical Preliminaries



Distributions and sub-distributions

Distribution over A assigns a probability to each a ∈ A
Let A be a countable set. A (discrete) distribution over A,
µ ∈ Distr(A), is a function µ : A→ [0, 1] such that:∑

a∈A
µ(a) = 1.

For modeling non-termination: sub-distributions
A (discrete) subdistribution over A, µ ∈ SDistr(A), is a function
µ : A→ [0, 1] such that: ∑

a∈A
µ(a) ≤ 1.

“Missing” mass is probability of non-termination.



Examples of distributions

Fair coin: Flip
I Distribution over B = {tt,ff }
I µ(tt) = µ(ff ) , 1/2

Biased coin: Flip(1/4)
I Distribution over B = {tt,ff }
I µ(tt) , 1/4, µ(ff ) , 3/4

Dice roll: Roll
I Distribution over N = {0, 1, 2, . . . }
I µ(1) = · · · = µ(6) , 1/6
I Otherwise: µ(n) , 0
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Notation for distributions

Probability of a set
Let E ⊆ A be an event, and let µ ∈ Distr(A) be a distribution.
Then the probability of E in µ is:

µ(E) ,
∑
x∈E

µ(x).

Expected value
Let µ ∈ Distr(A) be a distribution, and f : A→ R+ be a
non-negative function. Then the expected value of f in µ is:

Ex∼µ[f(x)] ,
∑
x∈A

f(a) · µ(a).
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Operations on distributions: unit

The simplest possible distribution
Dirac distribution: Probability 1 of producing a particular
element, and probability 0 of producing anything else.

Distribution unit
Let a ∈ A. Then unit(a) ∈ Distr(A) is defined to be:

unit(a)(x) =
{

1 : x = a

0 : otherwise

Why “unit”? The unit (“return”) of the distribution monad.
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Operations on distributions: map

Translate each distribution output to something else
Whenever sample x, sample f(x) instead. Transformation map
f is deterministic: function A→ B.

Distribution map
Let f : A→ B. Then map(f) : Distr(A)→ Distr(B) takes
µ ∈ Distr(A) to:

map(f)(µ)(b) ,
∑

a∈A:f(a)=b
µ(a)

Probability of b ∈ B is sum probability of a ∈ A mapping to b.
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Example: distribution map

Swap results of a biased coin flip
I Let neg : B→ B map tt 7→ ff , and ff 7→ tt.
I Then µ = map(neg)(Flip(1/4)) swaps the results of a

biased coin flip.
I By definition of map: µ(tt) = 3/4, µ(ff ) = 1/4.

Try this at home!
What is the distribution obtained by adding 1 to the result of a
dice roll Roll? Compute the probabilities using map.
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Operations on distributions: bind

Sequence two sampling instructions together
Draw a sample x, then draw a sample from a distribution f(x)
depending on x. Transformation map f is randomized: function
A→ Distr(B).

Distribution bind
Let µ ∈ Distr(A) and f : A→ Distr(B). Then
bind(µ, f) ∈ Distr(B) is defined to be:

bind(µ, f)(b) ,
∑
a∈A

µ(a) · f(a)(b)



Operations on distributions: bind

Sequence two sampling instructions together
Draw a sample x, then draw a sample from a distribution f(x)
depending on x. Transformation map f is randomized: function
A→ Distr(B).

Distribution bind
Let µ ∈ Distr(A) and f : A→ Distr(B). Then
bind(µ, f) ∈ Distr(B) is defined to be:

bind(µ, f)(b) ,
∑
a∈A

µ(a) · f(a)(b)



Unpacking the formula for bind

bind(µ, f)(b) ,
∑
a∈A µ(a) · f(a)(b)

Probability of sampling b is . . .

1. Sample a ∈ A from µ: probability µ(a)
2. Sample b from f(a): probability f(a)(b)
3. Sum over all possible “intermediate samples” a ∈ A
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Example: distribution bind

Summing two dice rolls
I For n ∈ N, let f(n) ∈ Distr(N) be the distribution of adding
n to the result of a fair dice roll Roll.

I Then: µ = bind(Roll, f) is the distribution of the sum of
two fair dice rolls.

I Can check from definition of bind:
µ(2) = (1/6) · (1/6) = 1/36

Try this at home!
I Define f in terms of distribution map.
I What if you try to define µ with map instead of bind?
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Operations on distributions: conditioning

Restrict a distribution to a smaller subset
Given a distribution over A, assume that the result is in E ⊆ A.
Then what probabilities should we assign elements in A?

Distribution conditioning
Let µ ∈ Distr(A), and E ⊆ A. Then µ conditioned on E is the
distribution in Distr(A) defined by:

(µ | E)(a) ,
{
µ(a)/µ(E) : a ∈ E
0 : a /∈ E

Idea: probability of a “assuming that” the result must be in E.
Only makes sense if µ(E) is not zero!
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Example: conditioning

Rolling a dice until even number
Suppose we repeatedly roll a dice until it produces an even
number. What distribution over even numbers will we get?

Model as a conditional distribution
I Let E = {2, 4, 6}
I Resulting distribution is µ = (Roll | E)
I From definition of conditioning: µ(2) = µ(4) = µ(6) = 1/3

Try this at home!
Suppose we keep rolling two dice until the sum of the dice is 6
or larger. What is the distribution of the final sum?



Example: conditioning

Rolling a dice until even number
Suppose we repeatedly roll a dice until it produces an even
number. What distribution over even numbers will we get?

Model as a conditional distribution
I Let E = {2, 4, 6}
I Resulting distribution is µ = (Roll | E)
I From definition of conditioning: µ(2) = µ(4) = µ(6) = 1/3

Try this at home!
Suppose we keep rolling two dice until the sum of the dice is 6
or larger. What is the distribution of the final sum?



Operations on distributions: convex combination

Blending/mixing two distributions
Say we have distributions µ1, µ2 over the same set. Blending
the distributions: with probability p, draw something from µ1.
Else, draw something from µ2.

Convex combination
Let µ1, µ2 ∈ Distr(A), and let p ∈ [0, 1]. Then the convex
combination of µ1 and µ2 is defined by:

µ1 ⊕p µ2(a) , p · µ1(a) + (1− p) · µ2(a).
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Example: convex combination

Blend two biased coin flips
I Let µ1 = Flip(1/4), µ2 = Flip(3/4)
I From definition of mixing, µ1 ⊕1/2 µ2 is a fair coin Flip

Try this at home!
I Show that Flip(r)⊕p Flip(s) = Flip(p · r + (1− p) · s).
I Show this relation between mixing and conditioning:

µ = (µ | E)⊕µ(E) (µ | E)
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Operations on distributions: independent product

Distribution of two “fresh” samples
Common operation in probabilistic programming languages:
draw a sample, and then draw another, “fresh” sample.

Independent product
Let µ1 ∈ Distr(A1) and µ2 ∈ Distr(A2). Then the independent
product is the distribution in Distr(A1 ×A2) defined by:

(µ1 ⊗ µ2)(a1, a2) , µ1(a1) · µ2(a2).
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Example: independent product

Distribution of two fair coin flips
I Let µ1 = µ2 = Flip
I Then distribution of pair of fair coin flips is µ = µ1 ⊗ µ2
I By definition, can show µ(b1, b2) = (1/2) · (1/2) = 1/4.

Try this at home!
I Show that unit(a1)⊗ unit(a2) = unit((a1, a2)).
I Can you formulate and prove an interesting property

relating independent product and distribution bind?
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Our First Probabilistic Language
Probabilistic WHILE (pWhile)



pWhile by Example

The language, in a nutshell
I Core imperative While-language
I Assignment, sequencing, if-then-else, while-loops
I Main extension: a command for random sampling x $← d,

where d is a built-in distribution

Can you guess what this program does?

x $← Roll;
y $← Roll;
z ← x+ y
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pWhile by Example

Control flow can be probabilistic
I Branches can depend on random samples
I Challenge for verification: can’t do a simple case analysis
I In some sense, an execution takes both branches

Can you guess what this program does?

choice $← Flip;
if choice then

res $← Flip(1/4)
else

res $← Flip(3/4)
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pWhile by Example

Loops can also be probabilistic
I Number of iterations can be randomized
I Termination can be probabilistic

Can you guess what this program does?

t← 0; stop ← ff ;
while ¬stop do
t← t+ 1;
stop $← Flip(1/4)



pWhile by Example

Loops can also be probabilistic
I Number of iterations can be randomized
I Termination can be probabilistic

Can you guess what this program does?
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t← t+ 1;
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More formally: pWhile expressions

Grammar of boolean and numeric expressions

E 3 e := x ∈ X (variables)
| b ∈ B | E > E | E = E (booleans)
| n ∈ N | E + E | E · E (numbers)

Basic expression language
I Expression language can be extended if needed
I Assume: programs only use well-typed expressions



More formally: pWhile d-expressions

Grammar of d-expressions

DE 3 d := Flip (fair coin flip)
| Flip(p) (p-biased coin flip, p ∈ [0, 1])
| Roll (fair dice roll)

“Built-in” or “primitive” distributions
I Distributions can be extended if needed
I “Mathematically standard” distributions
I Distributions that can be sampled from in hardware



More formally: pWhile commands

Grammar of commands

C 3 c := skip (do nothing)
| X ← E (assignment)
| X $← DE (sampling)
| C ; C (sequencing)
| if E then C else C (if-then-else)
| while E do C (while-loop)

Imperative language with sampling
I Bare-bones imperative language
I Many possible extensions: procedures, pointers, etc.
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Day 1: Introducing Probabilistic Programs
I Motivations and key questions
I Mathematical preliminaries

Day 2: First-Order Programs 1
I Probabilistic While language, monadic semantics
I Weakest pre-expectation calculus
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I Probabilistic While language, transformer semantics
I Probabilistic separation logic

Day 4: Higher-Order Programs
I Type system: probability monad
I Type system: probabilistic PCF



Last time: pWhile programs

Can you guess what this program does?

r ← 0;
while r < 4 do
r $← Roll

Uniform sample from {4, 5, 6}
I Start with dice roll, condition on r ≥ 4
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More formally: pWhile commands

Grammar of commands

C 3 c := skip (do nothing)
| X ← E (assignment)
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| if E then C else C (if-then-else)
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A First Semantics for pWhile
Monadic Semantics



Program states

Programs modify memories
I Memories m assign a value v ∈ V to each variable x ∈ X
I Just like memories in imperative languages

More formally:

m ∈M , X → V
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Semantics of expressions

The value of an expression depends on the memory
I Example: value of x+ 1 depends on the memory m
I Semantics of expressions takes memory as parameter

More formally:

J−K : E →M→ V

For example:
I Expression x+ 1
I Memory m with m(x) = 3
I Jx+ 1Km , JxKm+ J1Km , m(x) + 1 = 3 + 1 = 4
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I Semantics of expressions takes memory as parameter

More formally:

J−K : E →M→ V
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I Expression x+ 1
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Semantics of distributions

Semantics of d-expression is distribution over values
I From d-expression to a (mathematical) distribution
I (Easy) extension: d-expression with parameters

More formally:

J−K : DE → Distr(V)

For example:
I D-expression Flip
I JFlipK , µ ∈ Distr(B), where µ(tt) = µ(ff ) = 1/2



Monadic semantics of commands: overview

First choice:
1. Command takes a memory as input, or:
2. Command takes a distribution over memories as input?

This lecture: monadic semantics

L−M : C →M→ Distr(M)
Command: input memory to output distribution over memories.
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Command: input memory to output distribution over memories.



Operations on distributions: unit

The simplest possible distribution
Dirac distribution: Probability 1 of producing a particular
element, and probability 0 of producing anything else.

Distribution unit
Let a ∈ A. Then unit(a) ∈ Distr(A) is defined to be:

unit(a)(x) =
{

1 : x = a

0 : otherwise

Why “unit”? The unit (“return”) of the distribution monad.



Semantics of commands: skip

Intuition
I Input: memory m
I Output: distribution that always returns m

Semantics of skip

LskipMm , unit(m)
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Semantics of commands: assignment

Intuition
I Input: memory m
I Output: distribution that always returns m with x 7→ v,

where v is the original value of e in m.

Semantics of assignment
Let v , JeKm. Then:

Lx← eMm , unit(m[x 7→ v])



Semantics of commands: assignment

Intuition
I Input: memory m
I Output: distribution that always returns m with x 7→ v,

where v is the original value of e in m.

Semantics of assignment
Let v , JeKm. Then:

Lx← eMm , unit(m[x 7→ v])



Operations on distributions: map

Translate each distribution output to something else
Whenever sample x, sample f(x) instead. Transformation map
f is deterministic: function A→ B.

Distribution map
Let f : A→ B. Then map(f) : Distr(A)→ Distr(B) takes
µ ∈ Distr(A) to:

map(f)(µ)(b) ,
∑

a∈A:f(a)=b
µ(a)

Probability of b ∈ B is sum probability of a ∈ A mapping to b.



Semantics of commands: sampling

Intuition
I Input: memory m
I Draw sample from JdK, call it v
I Given v, map to updated output memory m[x 7→ v]

Semantics of sampling
Let f(v) , m[x 7→ v]. Then:

Lx $← dMm , map(f)(JdK)
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I Draw sample from JdK, call it v
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Semantics of sampling
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Operations on distributions: bind

Sequence two sampling instructions together
Draw a sample x, then draw a sample from a distribution f(x)
depending on x. Transformation map f is randomized: function
A→ Distr(B).

Distribution bind
Let µ ∈ Distr(A) and f : A→ Distr(B). Then
bind(µ, f) ∈ Distr(B) is defined to be:

bind(µ, f)(b) ,
∑
a∈A

µ(a) · f(a)(b)



Semantics of commands: sequencing

Intuition
I Input: memory m
I Run first command, get distribution µ1
I Sample m′ from µ1, bind into second command

Semantics of sequencing

Lc1 ; c2Mm , bind(Lc1Mm, Lc2M)
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Semantics of commands: conditionals

Intuition
I Input: memory m
I If guard is true in m run c1, else run c2
I Note: m is a memory, not a distribution!

Semantics of conditionals

Lif e then c1 else c2Mm ,

{
Lc1Mm : JeKm = tt
Lc2Mm : JeKm = ff
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Semantics of loops: first try

Intuition
I Input: memory m
I Idea: while e do c should be sequence of if-then-else:

(if e then c); · · · ; (if e then c)

I Define loop semantics as limit?

Lwhile e do cMm ?= limn→∞L(if e then c)nMm

What does this limit mean?
I Say µn , L(if e then c)nMm
I Each µn is a distribution in Distr(M). Does limit exist?
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Intuitive loop semantics: limit may not exist!

Simple example: flipper

while tt do if x then x← ff else x← tt

What does this program do?

Repeatedly changes x to tt and ff
I Suppose input m has m(x) = tt
I Can verify: µn = L(if e then c)nMm has all mass on m for

even n, and all mass on m[x 7→ ff ] for odd n
I Oscillates: no sensible limit!



Intuitive loop semantics: limit may not exist!

Simple example: flipper

while tt do if x then x← ff else x← tt

What does this program do?

Repeatedly changes x to tt and ff
I Suppose input m has m(x) = tt
I Can verify: µn = L(if e then c)nMm has all mass on m for

even n, and all mass on m[x 7→ ff ] for odd n
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Semantics of loops: approximants

Problem with the flipper example: loop not terminating
I Idea: only “count” probability mass that has terminated
I Why? Once loop terminates, it is always terminated
I Terminated states can’t oscillate: values remain constant

More formally...
I For µ ∈ Distr(M), define:

µ[e](m) ,
{
µ(m) : JeKm = tt
0 : otherwise

I Erase weight of memories where e = ff (not conditioning)
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Semantics of loops: limit of approximants

Loop approximants
Idea: mass that has terminated after n iterations

µn , (L(if e then c)nMm)[¬e]

Sub-distributions µn are increasing in n: for any m′,

µn(m′) ≤ µn+1(m′).

Thus limit exists!

Finally: define loop semantics

Lwhile c do eMm , limn→∞ µn
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Semantics of loops: example
Consider this loop:

while ¬stop do
t← t+ 1;
stop $← Flip(1/4)

Suppose input memory m has m(t) = 0,m(stop) = ff

I After 1 iters: terminates with prob. 1/4 with t = 1
I After 2 iters: terminates with prob. 3/4 · 1/4 with t = 2
I After n iters: terminates with prob. (3/4)n−1 · 1/4 with t = n

Thus approximants are:

µn(Jt = kK) = (3/4)k−1 · 1/4

for k = 1, . . . , n. Taking limit as n→∞ gives loop semantics.
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Reasoning about pWhile Programs
Weakest Pre-Expectation Calculus



Standard programs: Weakest Pre-conditions (Dijkstra)

Given a program and a post-condition, find pre-condition
I Given: program c and post-condition Q
I Find wp(c,Q): general pre-condition that ensures Q holds

To check Q on output, check wp(c,Q) on input
I If input state m satisfies wp(c,Q), then JcKm satisfies Q



Example: Weakest Pre-conditions

Example
I Program: x← y

I Post-condition: x > 0

What is the wp?

Answer: wp(x← y, x > 0) = (y > 0)

Why?
Condition y > 0 is the least we need to ensure that x > 0 holds
after running x← y.
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Example: Weakest Pre-conditions

Example
I Program: x← y;x← x+ 1
I Post-condition: x > 0

What is the wp?

Answer: wp(x← y;x← x+ 1, x > 0) = (y > −1)

Why?
Condition y > −1 is the least we need to ensure that x > 0
holds after running x← y;x← x+ 1.
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Example: Weakest Pre-conditions

Example
I Program: if z > 0 then x← y;x← x+ 1 else x← 5
I Post-condition: x > 0

What is the wp?

Possible to work out by hand, but getting a bit cumbersome...



Example: Weakest Pre-conditions

Example
I Program: if z > 0 then x← y;x← x+ 1 else x← 5
I Post-condition: x > 0

What is the wp?
Possible to work out by hand, but getting a bit cumbersome...



How to make computing WP easier?

Idea: compute WP compositionally
I WP of complex command defined in terms of WP for

sub-commands

Benefits
I Simplify computation of WP for complicated programs
I WP can be computed “mechanically” (and automatically)



WP Calculus: Skip

Intuition
I Program: skip
I Post-condition: Q
I To ensure Q holds after, Q must hold before

WP for Skip

wp(skip, Q) = Q
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WP Calculus: Assignment

Intuition
I Program: x← e

I Post-condition: Q
I To ensure Q holds after, Q with x 7→ e must hold before

WP for Assignment

wp(x← e,Q) = Q[x 7→ e]

Brief check

wp(x← x+ 1, x > 0) = (x+ 1 > 0) = (x > −1)
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WP Calculus: Sequencing

Intuition
I Program: c1 ; c2
I Post-condition: Q
I To ensure Q holds after c2, wp(c2, Q) must hold after c1
I To ensure wp(c2, Q) holds after c1, compute another wp

WP for Sequencing

wp(c1 ; c2, Q) = wp(c1, wp(c2, Q))
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Intuition
I Program: c1 ; c2
I Post-condition: Q
I To ensure Q holds after c2, wp(c2, Q) must hold after c1
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WP Calculus: Conditionals

Intuition
I Program: if e then c1 else c2
I Post-condition: Q
I To ensure Q holds after, wp(c1, Q) must hold before if
e = tt, and wp(c2, Q) must hold before if e = ff

WP for Conditionals

wp(if e then c1 else c2, Q) = (e→ wp(c1, Q)) ∧ (¬e→ wp(c2, Q))
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Intuition
I Program: if e then c1 else c2
I Post-condition: Q
I To ensure Q holds after, wp(c1, Q) must hold before if
e = tt, and wp(c2, Q) must hold before if e = ff

WP for Conditionals
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Example: using the WP calculus

Example
I Program: if z > 0 then x← y;x← x+ 1 else x← 5
I Post-condition: x > 0

What is the wp? A bit ugly, but entirely mechanical:

wp(if z > 0 then x← y;x← x+ 1 else x← 5, x > 0)
= (z > 0→ wp(x← y;x← x+ 1, x > 0))
∧ (z ≤ 0→ wp(x← 5, x > 0))

= (z > 0→ wp(x← y;x > −1)) ∧ (z ≤ 0→ 5 > 0))
= (z > 0→ y > −1)
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What is WP for loops?

Problem: WP for loops is not easy to compute
I Defined in terms of a least fixed-point
I Might have to unroll loop arbitrarily far to compute wp

Idea: we often don’t need to compute WP for loops
I Just want to know: does P imply wp(while e do c,Q)?
I Use simpler, su�cient conditions to prove this implication
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WP for loops: invariant rule
Setup
I Program while e do c
I Pre-condition P , post-condition Q

If we know I satisfying the invariant conditions...
I P → I

I I ∧ ¬e→ Q

I I ∧ e→ wp(c, I)
then we are done:

P → wp(while e do c,Q)

What’s the catch? Need to magically find an invariant I
I Invariant conditions are easy to check
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Example: using the invariant rule

Example
I Program: while n > 0 do n← n− 2
I Pre-condition: P is n%2 = 0 ∧ n ≥ 0 (n is even)
I Post-condition: Q is n = 0

Invariant:

I = (n > 0→ n%2 = 0) ∧ (n ≤ 0→ n = 0)

Check these invariant conditions:
I P → I

I I ∧ ¬e→ Q

I I ∧ e→ wp(c, I)
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Generalizing Weakest Preconditions
to Probabilistic Programs



Idea: generalize predicates to expectations
“Real-valued” version of predicates
I Predicate: P :M→ B
I Expectation: E :M→ R+

Example: numeric expression
I If x, y, z are numeric, then they are all expectations
I Also expressions like x+ y, x · y, . . .

Example: indicator function
I If P is a (binary) predicate, then the indicator function is:

[P ](m) =
{

1 : P (m) = tt
0 : P (m) = ff

I Turns a predicate into an expectation
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What do expectations “mean” in a probabilistic state?

Intuition
I The “value” of a predicate P in a memory m is [P ](m): 0 if

false, and 1 if true.
I The “value” of an expectation E in a distribution over

memories µ is the average of E over µ.



Example: encoding a probability as an expectation

Suppose that:
I µ is a distribution over memories
I E is the expectation [x = y]

Then we have:
The probability of x = y in µ is the average of E over µ.



Example: encoding an average as an expectation

Suppose that:
I µ is a distribution over memories
I E is the expectation t, where t is the running time

Then we have:
The average running time in µ is the average of E over µ.



Weakest pre-expectation (Morgan and McIver)

Looks similar to weakest pre-conditions
I Given: probabilistic program c and expectation E
I Find wpe(c, E): an expectation that computes the average

value of E in the output distribution after running c

To find average value of E after, evaluate wpe(c, E)
I For any input state m, the average value of E in the output

distribution LcMm is exactly wpe(c, E)(m).



Tailored to the monadic semantics for pWhile

Key property satisfied by wpe
For any program c, expectation E, and input memory m:

wpe(c, E)(m) = Em′∼LcMm[E(m′)]

Expectation evaluated on input
I Input is a single memory m
I Evaluate expectation on the memory

Expectation evaluated on output
I Output is a distribution over memories LcMm
I Average the expectation over the output distribution



Tailored to the monadic semantics for pWhile

Key property satisfied by wpe
For any program c, expectation E, and input memory m:

wpe(c, E)(m) = Em′∼LcMm[E(m′)]

Expectation evaluated on input
I Input is a single memory m
I Evaluate expectation on the memory

Expectation evaluated on output
I Output is a distribution over memories LcMm
I Average the expectation over the output distribution



Tailored to the monadic semantics for pWhile

Key property satisfied by wpe
For any program c, expectation E, and input memory m:

wpe(c, E)(m) = Em′∼LcMm[E(m′)]

Expectation evaluated on input
I Input is a single memory m
I Evaluate expectation on the memory

Expectation evaluated on output
I Output is a distribution over memories LcMm
I Average the expectation over the output distribution



Example: Reasoning with Weakest Pre-expectation

Example
I Program: z $← Flip(p)
I Expectation: [z]

What is the wpe?

Answer: wpe(z $← Flip(p), [z]) = p

Why?
Average value of [z] after running z $← Flip(p) is the probability
that z = tt, which is p.
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Example: Reasoning with Weakest Pre-expectation

Example
I Program: x $← Roll; y $← Roll
I Expectation: x+ y

What is the wpe?

Answer: wpe(x $← Roll; y $← Roll, x+ y) = 7

Why? Already not so easy to see...
Average value of x+ y after running x $← Roll; y $← Roll is the
average value of x plus the average value of y, which is
3.5 + 3.5 = 7.
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Day 1: Introducing Probabilistic Programs
I Motivations and key questions
I Mathematical preliminaries

Day 2: First-Order Programs 1
I Probabilistic While language, monadic semantics
I Weakest pre-expectation calculus

Day 3: First-Order Programs 2
I Probabilistic While language, transformer semantics
I Probabilistic separation logic

Day 4: Higher-Order Programs
I Type system: probability monad
I Type system: probabilistic PCF



Last time: monadic semantics for pWhile

The pWhile language
I Core imperative language extended with random sampling

Monadic semantics

LcM :M→ Distr(M)
I Input: memory
I Output: distribution over memories
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Last time: weakest pre-expectations

Weakest pre-expectation calculus
I Given: pWhile program c

I Given: post-expectation E :M→ R+

I Compute wpe(c, E): maps an input m to c to the expected
value of E in the output of c executed on m.

What is this useful for?
I “The probability of x = y is 1/2” in the output
I “The expected value of t in the output is n+ 42”
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How to compute Weakest Pre-expectations easier?

Same idea as for wp: define wpe compositionally
I Compute wpe of a program from wpe of sub-programs
I Break down a complicated computation into simpler parts

Overall framework developed by Morgan and McIver
I Work over multiple decades, building on work by Kozen
I Also covered non-deterministic choice (we won’t do this)
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WPE Calculus: Skip

Intuition
I Program: skip
I Post-expectation: E
I Average value of E after is just E before

WPE for Skip

wpe(skip, E) = E
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WPE Calculus: Assignment

Intuition
I Program: x← e

I Post-expectation: E
I Average value of E after is E with x 7→ e before

WPE for Assignment

wpe(x← e, E) = E[x 7→ e]
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WPE Calculus: Random sampling

Intuition
I Program: x $← d

I Post-expectation: E
I Average value of E computed from averaging over x

WPE for sampling Flip(p)

wpe(x $← Flip(p), E) = p · E[x 7→ tt] + (1− p) · E[x 7→ ff ]

Try this at home!
What is wpe(x $← Roll, E)?
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WPE Calculus: Sequencing

Intuition
I Program: c1 ; c2
I Post-expectation: E
I Average value of E after c2 is wpe(c2, E) before c2
I Average value of wpe(c2, E) before c1: another wpe

WPE for Sequencing

wpe(c1 ; c2, E) = wpe(c1, wpe(c2, E))
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WPE Calculus: Conditionals

Intuition
I Program: if e then c1 else c2
I Post-expectation: E
I Average value of E after is wpe(c1, E) before if e = tt, else
wpe(c2, E) before if e = ff

WPE for Conditionals

wpe(if e then c1 else c2, E) = [e] · wpe(c1, E) + [¬e] · wpe(c2, E)

Indicator functions play the role of if-then-else.
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WPE Calculus: Main soundness theorem

Theorem
Let c be a pWhile program, E be an expectation, andm ∈M
be any input state. If µ = LcMm is the output memory, then:

Em′∼µ[E(m′)] = wpe(c, E)(m).

Try this at home!
Prove this for loop-free programs, by induction on the program
structure.
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Weakest Pre-expectations
for Probabilistic Loops



Can you guess this WPE?

Program:
n← 100;
while n > 42 do
n← n− 1

Post-expectation: n

Answer
Deterministic program, always terminates with n = 42. So
wpe(c, n) = 42.
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Answer
Deterministic program, always terminates with n = 42. So
wpe(c, n) = 42.



What about this one?

Program:
n← 100;
while n > 42 do

dec $← Flip;
if dec then n← n− 1

Post-expectation: n

Answer
Randomized program, but always terminates with n = 42. So
wpe(c, n) = 42.



What about this one?

Program:
n← 100;
while n > 42 do
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if dec then n← n− 1

Post-expectation: n

Answer
Randomized program, but always terminates with n = 42. So
wpe(c, n) = 42.



What about this one?

Program:
t← 0; stop ← ff ;
while ¬stop do
t← t+ 1;
stop $← Flip(1/4)

Post-expectation: t

Starting to get more complicated...
Can we give a general method to compute wpe for loops?
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What is the WPE of a loop?

Can define wpe for loops mathematically, but...
I Defined in terms of a least fixed point
I Hard to compute wpe(while b do c, E) in terms of wpe(c,−)

Idea: prove upper and lower bounds on wpe
I Analog of wp: implication becomes inequality
I Don’t aim to compute wpe exactly
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Making it easier to bound WPE: super-invariant rule

Setup: check upper-bounds on wpe
I Program: while e do c
I Pre-expectation E′, Post-expectation E
I Goal: Check if wpe(while e do c, E) ≤ E′

Super-invariant rule
Suppose we have an expectation I (the invariant) satisfying the
super-invariant conditions:
I I ≤ E′

I [e] · wpe(c, I) + [¬e] · E ≤ I

Then we can conclude the upper-bound:

wpe(while e do c, E) ≤ E′
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Making it easier to bound WPE: sub-invariant rule

Setup: check lower-bounds on wpe
I Program: while e do c
I Pre-expectation E′, Post-expectation E
I Goal: Check if E′wpe(while e do c, E)

Sub-invariant rule
Suppose we have an expectation I (the invariant) satisfying the
sub-invariant conditions and I is bounded in [0, 1]:
I E′ ≤ I
I I ≤ [e] · wpe(c, I) + [¬e] · E

Then we can conclude the lower-bound:

E′ ≤ wpe(while e do c, E)



Making it easier to bound WPE: sub-invariant rule

Setup: check lower-bounds on wpe
I Program: while e do c
I Pre-expectation E′, Post-expectation E
I Goal: Check if E′wpe(while e do c, E)

Sub-invariant rule
Suppose we have an expectation I (the invariant) satisfying the
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Making it easier to bound WPE: sub-invariant rule

Setup: check lower-bounds on wpe
I Program: while e do c
I Pre-expectation E′, Post-expectation E
I Goal: Check if E′wpe(while e do c, E)

Sub-invariant rule
Suppose we have an expectation I (the invariant) satisfying the
sub-invariant conditions and I is bounded in [0, 1]:
I E′ ≤ I
I I ≤ [e] · wpe(c, I) + [¬e] · E

Then we can conclude the lower-bound:

E′ ≤ wpe(while e do c, E)



An example: Fair

Simulate a fair coin flip from biased coin flips

while x = y do
x $← Flip(p);
y $← Flip(p);

Goal: show that if x = y initially, then final x is fair coin
In terms of wpe, this follows from proving:

wpe(Fair, [x]) = [x = y] · 0.5 + [x 6= y] · [x]

Prove this in two steps:
1. Upper-bound: wpe(Fair, [x]) ≤ [x = y] · 0.5 + [x 6= y] · [x]
2. Lower-bound: wpe(Fair, [x]) ≥ [x = y] · 0.5 + [x 6= y] · [x]
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Fair: proving the upper-bound

Want I satisfying super-invariant conditions:

I ≤ [x = y] · wpe(x $← Flip(p); y $← Flip(p), I) + [x 6= y] · [x]

Take the following invariant:

I , [x = y] · 0.5 + [x 6= y] · [x]
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Fair: checking the super-invariant condition
Apply the wpe calculus rules

[x = y] · wpe(x $← Flip(p); y $← Flip(p), I) + [x 6= y] · [x]

= [x = y] · wpe(x $← Flip(p),
p · I[y 7→ tt] + (1− p) · I[y 7→ ff ]) + [x 6= y] · [x]

= [x = y] · (p · p · I[x, y 7→ tt] + p · (1− p) · I[x, y 7→ tt,ff ]
+ p · (1− p) · I[x, y 7→ ff , tt] + (1− p)2 · I[x, y 7→ ff ]) + [x 6= y] · [x]

= [x = y] · (p · p · 0.5 + p · (1− p) · 1
+ p · (1− p) · 0 + (1− p)2 · 0.5) + [x 6= y] · [x]

= [x = y] + [x 6= y] · [x] ≤ I

Thus the super-invariant rule proves the upper-bound:

wpe(Fair, [x]) ≤ [x = y] · 0.5 + [x 6= y] · [x]
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Fair: proving the lower-bound

Want I satisfying sub-invariant conditions:

I ≥ [x = y] · wpe(x $← Flip(p); y $← Flip(p), I) + [x 6= y] · [x]

The same invariant works:

I , [x = y] · 0.5 + [x 6= y] · [x]

And I is bounded in [0, 1].

Thus the sub-invariant rule proves the lower-bound:

wpe(Fair, [x]) ≥ [x = y] · 0.5 + [x 6= y] · [x]



WPE: references and further reading

Recent survey of the area
Kaminski. Advanced Weakest Precondition Calculi for
Probabilistic Programs. PhD Thesis (RWTH Aachen), 2019.
https://moves.rwth-aachen.de/people/kaminski/thesis/

Comprehensive book
McIver and Morgan. Abstraction, Refinement and Proof for
Probabilistic Systems. Springer, 2004.

https://moves.rwth-aachen.de/people/kaminski/thesis/


Related methods: Hoare logics for monadic pWhile

Prove judgments of the following form:

{P} c {Q}
I Pre-condition P describes input memory
I Post-condition Q describes output memory distribution

Example systems
I A program logic for union bounds (ICALP16)
I Formal certification of code-based cryptographic proofs (POPL09)
I Probabilistic relational reasoning for di�erential privacy (POPL12)
I A pre-expectation calculus for probabilistic sensitivity (POPL21)



A Second Semantics for pWhile
Transformer Semantics



Why a second semantics?

Alternative view of what the program does
I Gives us a new way of understanding the program behavior

Enable new extensions of the language
I Allows extending the language with di�erent features

Support di�erent verification methods
I Can make some properties easier (or harder) to verify
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Semantics of expressions/distributions: unchanged

Recall: program states are memories
Memory m maps each variable to a value:

m ∈M = X → V

Expression semantics: map memory to value

J−K : E →M→ V

D-expression semantics: distribution over values

J−K : DE → Distr(V)
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Transformer semantics of commands: overview

Last time: monadic semantics

L−M : C →M→ Distr(M)
Command: input memory to output distribution over memories.

This time: transformer semantics (Kozen)

J−K : C → Distr(M)→ Distr(M)
Command: input distribution over memories to output
distribution over memories.
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Semantics of commands: skip

Intuition
I Input: memory distribution µ
I Output: the same memory distribution µ

Semantics of skip

JskipKµ , µ
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Semantics of commands: assignment

Intuition
I Input: memory distribution µ
I Output: distribution from sampling m from µ, and mapping

to m with x 7→ v, where v is the original value of e in m.

Semantics of assignment
Let f(m) = m[x 7→ JeKm]. Then:

Jx← eKµ , map(f)(µ)
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Semantics of commands: sampling

Intuition
I Input: memory distribution µ
I Sample m from µ, and sample v from d-expression
I Output: return updated memory, m with x 7→ v

Semantics of sampling
Let g(m)(v) = m[x 7→ v]. Then:

Jx $← dKµ , bind(µ, λm. map(g(m))(JdK))
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Semantics of commands: sequencing

Intuition
I Input: memory distribution µ
I Transform µ to µ′ using first command
I Output: transform µ′ to µ′′ using second command

Semantics of sequencing

Jc1 ; c2Kµ , Jc2K(Jc1Kµ)
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Semantics of commands: conditionals (first try)

Intuition
I Input: memory distribution µ
I ???

Problem: what should input to branches be?
I First branch: distribution where guard holds
I Second branch: distribution where guard doesn’t hold
I But µ may have some probability of both cases
I Can’t case analysis on guard in µ (cf. monadic semantics)
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Operations on distributions: conditioning

Restrict a distribution to a smaller subset
Given a distribution over A, assume that the result is in E ⊆ A.
Then what probabilities should we assign elements in A?

Distribution conditioning
Let µ ∈ Distr(A), and E ⊆ A. Then µ conditioned on E is the
distribution in Distr(A) defined by:

(µ | E)(a) ,
{
µ(a)/µ(E) : a ∈ E
0 : a /∈ E

Idea: probability of a “assuming that” the result must be in E.
Only makes sense if µ(E) is not zero!



Semantics of commands: conditionals (second try)

Intuition
I Input: memory distribution µ
I Condition µ on guard true; transform with first branch
I Condition µ on guard false; transform with second branch
I Output: ???

Problem: how to combine outputs of branches?
I First branch: some output distribution
I Second branch: some other output distribution
I But we want a single output for the if-then-else
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Operations on distributions: convex combination

Blending/mixing two distributions
Say we have distributions µ1, µ2 over the same set. Blending
the distributions: with probability p, draw something from µ1.
Else, draw something from µ2.

Convex combination
Let µ1, µ2 ∈ Distr(A), and let p ∈ [0, 1]. Then the convex
combination of µ1 and µ2 is defined by:

µ1 ⊕p µ2(a) , p · µ1(a) + (1− p) · µ2(a).



Semantics of commands: conditionals

Intuition
I Input: memory distribution µ
I Record probability p of guard true
I Condition µ on guard true; transform with first branch
I Condition µ on guard false; transform with second branch
I Output: take p-convex combination of two results

Semantics of conditionals
Let p = µ(JeK) be the probability the guard is true. Then:

Jif e then c1 else c2Kµ , Jc1K(µ | Je = ttK)⊕p Jc2K(µ | Je = ff K)
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Semantics of commands: loops

Same strategy works as before
I Define sequence of loop approximants µ1, µ2, . . .

I Each µn: outputs terminating after n iterations
I Take limit µn as n→∞ to define output of loop

Maybe don’t try this at home:
Work out the gory details and define a transformer semantics
for loops.
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Comparing the two semantics:
Monadic versus Transformer



Monadic semantics to transformer semantics

Useful construction
I Given: f :M→ Distr(M)
I Define f# : Distr(M)→ Distr(M) by “averaging f” over

input distribution:

f#(µ)(m′) ,
∑
m∈M

µ(m) · f(m)(m′)

Relation between semantics
For any pWhile program c and input distribution µ, we have:

LcM#(µ) = JcKµ

Good sanity check: would be strange if monadic semantics
disagrees with transformer semantics when we feed in the
same input distribution.
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Transformer semantics to monadic semantics?

Not so useful fact
I Given: f : Distr(M)→ Distr(M)
I There does not always exist f :M→ Distr(M) such that
f = f#.

I Transformer semantics supports fancier PPL features

Notable example: conditioning
New command to condition the input distribution on a guard
being true:

Jobserve(e)Kµ , µ | Je = ttK

Not possible to give a monadic semantics to this command.
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For verification: what is the tradeo�?

Why prefer monadic semantics?
I Memory assertions are simpler than distribution assertions
I Can do case analysis on memory if input is a memory

Why prefer transformer semantics?
I Sometimes, want to assume property of input distribution
I Can enable verifying richer probabilistic properties
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I Can enable verifying richer probabilistic properties



Reasoning about pWhile Programs
Probabilistic Separation Logic



What Is Independence, Intuitively?

Two random variables x and y are
independent if they are uncorrelated:
the value of x gives no information
about the value or distribution of y.



Things that are independent

Fresh random samples
I x is the result of a fair coin flip
I y is the result of another, “fresh” coin flip
I More generally: “separate” sources of randomness

Uncorrelated things
I x is today’s winning lottery number
I y is the closing price of the stock market
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Things that are not independent

Re-used samples
I x is the result of a fair coin flip
I y is the result of the same coin flip

Common cause
I x is today’s ice cream sales
I y is today’s sunglasses sales
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What Is Independence, Formally?

Definition
Two random variables x and y are independent (in some
implicit distribution over x and y) if for all values a and b:

Pr(x = a ∧ y = b) = Pr(x = a) · Pr(y = b)

That is, the distribution over (x, y) is the product of a
distribution over x and a distribution over y.



Why Is Independence Useful for Program Reasoning?

Ubiquitous in probabilistic programs
I A “fresh” random sample is independent of the state.

Simplifies reasoning about groups of variables
I Complicated: general distribution over many variables
I Simple: product of distributions over each variable

Preserved under common program operations
I Local operations independent of “separate” randomness
I Behaves well under conditioning (prob. control flow)
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Reasoning about Independence: Challenges

Formal definition isn’t very promising
I Quantification over all values: lots of probabilities!
I Computing exact probabilities: often di�cult

How can we leverage the intuition
behind probabilistic independence?



Main Observation: Independence is Separation

Two variables x and y in a distribution
µ are independent if µ is the product of
two distributions µx and µy with
disjoint domains, containing x and y.

Leverage separation logic to reason about independence
I Pioneered by O’Hearn, Reynolds, and Yang
I Highly developed area of program verification research
I Rich logical theory, automated tools, etc.



Our Approach: Two Ingredients

• Develop a probabilistic
model of the logic BI

• Design a probabilistic
separation logic PSL



Bunched Implications
and Separation Logics



What Goes into a Separation Logic?

1. Programs
I Transform input states to output states
I Done: pWhile with transformer semantics

2. Assertions
I Formulas describe pieces of program states
I Semantics defined by a model of BI (Pym and O’Hearn)

3. Program logic
I Formulas describe programs
I Assertions specify pre- and post-conditions
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Classical Setting: Heaps

Program states (s, h)
I A store s : X → V , map from variables to values
I A heap h : N⇀ V , partial map from addresses to values

Pointer-manipulating programs
I Control flow: sequence, if-then-else, loops
I Read/write addresses in heap
I Allocate/free heap cells
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Assertion Logic: Bunched Implications (BI)

Substructural logic (O’Hearn and Pym)
I Start with regular propositional logic (>,⊥,∧,∨,→)
I Add a new conjunction (“star”): P ∗ Q
I Add a new implication (“magic wand”): P −∗ Q

Star is a multiplicative conjunction
I P ∧Q: P and Q hold on the entire state
I P ∗ Q: P and Q hold on disjoint parts of the entire state
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Resource Semantics of BI (O’Hearn and Pym)
Suppose states form a pre-ordered, partial monoid
I Set S of states, pre-order v on S
I Partial operation ◦ : S × S ⇀ S (assoc., comm., . . . )

Inductively define states that satisfy formulas

s |= > always
s |= ⊥ never
s |= P ∧Q i� s |= P and s |= Q

s |= P ∗ Q i� s1 ◦ s2 v s with s1 |= P and s2 |= Q

State s can be split into two “disjoint” states,
one satisfying P and one satisfying Q
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Example: Heap Model of BI

Set of states: heaps
I S = N⇀ V , partial maps from addresses to values

Monoid operation: combine disjoint heaps
I s1 ◦ s2 is defined to be union i� dom(s1) ∩ dom(s2) = ∅

Pre-order: extend/project heaps
I s1 v s2 i� dom(s1) ⊆ dom(s2), and s1, s2 agree on dom(s1)
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Propositions for Heaps

Atomic propositions: “points-to”
I x 7→ v holds in heap s i� x ∈ dom(s) and s(x) = v

Example axioms (not complete)
I Deterministic: x 7→ v ∧ y 7→ w ∧ x = y → v = w

I Disjoint: x 7→ v ∗ y 7→ w → x 6= y



The Separation Logic Proper

Programs c from a basic imperative language
I Read from location: x := ∗e
I Write to location: ∗e := e′

Program logic judgments

{P} c {Q}

Reading
Executing c on any input state satisfying P leads to an output
state satisfying Q, without invalid reads or writes.
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A Probabilistic Model of BI



States: Distributions over Memories

Memories (not heaps)
I Fix sets X of variables and V of values
I Memories indexed by domains A ⊆ X :M(A) = A→ V

Program states: randomized memories
I States are distributions over memories with same domain
I Formally: S = {s | s ∈ Distr(M(A)), A ⊆ X}
I When s ∈ Distr(M(A)), write dom(s) for A
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Monoid: “Disjoint” Product Distribution

Intuition
I Two distributions can be combined i� domains are disjoint
I Combine by taking product distribution, union of domains

More formally...
Suppose that s ∈ Distr(M(A)) and s′ ∈ Distr(M(B)). If A,B
are disjoint, then:

(s ◦ s′)(m ∪m′) = s(m) · s′(m′)

for m ∈M(A) and m′ ∈M(B). Otherwise, s ◦ s′ is undefined.
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Pre-Order: Extension/Projection

Intuition
I Define s v s′ if s “has less information than” s′

I In probabilistic setting: s is a projection of s′

More formally...
Suppose that s ∈ Distr(M(A)) and s′ ∈ Distr(M(B)). Then
s v s′ i� A ⊆ B, and for all m ∈M(A), we have:

s(m) =
∑

m′∈M(B)
s′(m ∪m′).

That is, s is obtained from s′ by marginalizing variables in B \A.
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Day 1: Introducing Probabilistic Programs
I Motivations and key questions
I Mathematical preliminaries

Day 2: First-Order Programs 1
I Probabilistic While language, monadic semantics
I Weakest pre-expectation calculus

Day 3: First-Order Programs 2
I Probabilistic While language, transformer semantics
I Probabilistic separation logic

Day 4: Higher-Order Programs
I Type system: probability monad
I Type system: probabilistic PCF



Atomic Formulas

Equalities
I e = e′ holds in s i� all variables FV (e, e′) ⊆ dom(s), and e

is equal to e′ with probability 1 in s

Distribution laws
I [e] holds in s i� all variables in FV (e) ⊆ dom(s)
I UnifS [e] holds in s i� FV (e) ⊆ dom(s), and e is uniformly

distributed on S (e.g., S = B is fair coin flip)
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Example: Distribution Assertions

Suppose µ has two variables x, y, indep. fair coin flips

µ([x 7→ tt, y 7→ tt]) = 1/4 µ([x 7→ tt, y 7→ ff ]) = 1/4
µ([x 7→ ff , y 7→ tt]) = 1/4 µ([x 7→ ff , y 7→ ff ]) = 1/4

Then: µ satisfies UnifB[x] ∗ UnifB[y]. Why?
I We can decompose µ = µx ⊗ µy, where:

µx([x 7→ tt]) , 1/2 µx([x 7→ ff ]) , 1/2
µy([y 7→ tt]) , 1/2 µy([y 7→ ff ]) , 1/2

So, µ v µx ◦ µy

I Next, µx |= UnifB[x] and µy |= UnifB[y]
I So by definition, µ |= UnifB[x] ∗ UnifB[y]



Example: Distribution Assertions

Suppose µ has two variables x, y, indep. fair coin flips

µ([x 7→ tt, y 7→ tt]) = 1/4 µ([x 7→ tt, y 7→ ff ]) = 1/4
µ([x 7→ ff , y 7→ tt]) = 1/4 µ([x 7→ ff , y 7→ ff ]) = 1/4

Then: µ satisfies UnifB[x] ∗ UnifB[y]. Why?

I We can decompose µ = µx ⊗ µy, where:

µx([x 7→ tt]) , 1/2 µx([x 7→ ff ]) , 1/2
µy([y 7→ tt]) , 1/2 µy([y 7→ ff ]) , 1/2

So, µ v µx ◦ µy

I Next, µx |= UnifB[x] and µy |= UnifB[y]
I So by definition, µ |= UnifB[x] ∗ UnifB[y]



Example: Distribution Assertions

Suppose µ has two variables x, y, indep. fair coin flips

µ([x 7→ tt, y 7→ tt]) = 1/4 µ([x 7→ tt, y 7→ ff ]) = 1/4
µ([x 7→ ff , y 7→ tt]) = 1/4 µ([x 7→ ff , y 7→ ff ]) = 1/4

Then: µ satisfies UnifB[x] ∗ UnifB[y]. Why?
I We can decompose µ = µx ⊗ µy, where:

µx([x 7→ tt]) , 1/2 µx([x 7→ ff ]) , 1/2
µy([y 7→ tt]) , 1/2 µy([y 7→ ff ]) , 1/2

So, µ v µx ◦ µy

I Next, µx |= UnifB[x] and µy |= UnifB[y]
I So by definition, µ |= UnifB[x] ∗ UnifB[y]



Example: Distribution Assertions

Suppose µ has two variables x, y, indep. fair coin flips

µ([x 7→ tt, y 7→ tt]) = 1/4 µ([x 7→ tt, y 7→ ff ]) = 1/4
µ([x 7→ ff , y 7→ tt]) = 1/4 µ([x 7→ ff , y 7→ ff ]) = 1/4

Then: µ satisfies UnifB[x] ∗ UnifB[y]. Why?
I We can decompose µ = µx ⊗ µy, where:

µx([x 7→ tt]) , 1/2 µx([x 7→ ff ]) , 1/2
µy([y 7→ tt]) , 1/2 µy([y 7→ ff ]) , 1/2

So, µ v µx ◦ µy

I Next, µx |= UnifB[x] and µy |= UnifB[y]
I So by definition, µ |= UnifB[x] ∗ UnifB[y]



Example: Distribution Assertions

Suppose µ has two variables x, y, indep. fair coin flips

µ([x 7→ tt, y 7→ tt]) = 1/4 µ([x 7→ tt, y 7→ ff ]) = 1/4
µ([x 7→ ff , y 7→ tt]) = 1/4 µ([x 7→ ff , y 7→ ff ]) = 1/4

Then: µ satisfies UnifB[x] ∗ UnifB[y]. Why?
I We can decompose µ = µx ⊗ µy, where:

µx([x 7→ tt]) , 1/2 µx([x 7→ ff ]) , 1/2
µy([y 7→ tt]) , 1/2 µy([y 7→ ff ]) , 1/2

So, µ v µx ◦ µy
I Next, µx |= UnifB[x] and µy |= UnifB[y]

I So by definition, µ |= UnifB[x] ∗ UnifB[y]



Example: Distribution Assertions

Suppose µ has two variables x, y, indep. fair coin flips

µ([x 7→ tt, y 7→ tt]) = 1/4 µ([x 7→ tt, y 7→ ff ]) = 1/4
µ([x 7→ ff , y 7→ tt]) = 1/4 µ([x 7→ ff , y 7→ ff ]) = 1/4

Then: µ satisfies UnifB[x] ∗ UnifB[y]. Why?
I We can decompose µ = µx ⊗ µy, where:

µx([x 7→ tt]) , 1/2 µx([x 7→ ff ]) , 1/2
µy([y 7→ tt]) , 1/2 µy([y 7→ ff ]) , 1/2

So, µ v µx ◦ µy
I Next, µx |= UnifB[x] and µy |= UnifB[y]

I So by definition, µ |= UnifB[x] ∗ UnifB[y]



Example: Distribution Assertions

Suppose µ has two variables x, y, indep. fair coin flips

µ([x 7→ tt, y 7→ tt]) = 1/4 µ([x 7→ tt, y 7→ ff ]) = 1/4
µ([x 7→ ff , y 7→ tt]) = 1/4 µ([x 7→ ff , y 7→ ff ]) = 1/4

Then: µ satisfies UnifB[x] ∗ UnifB[y]. Why?
I We can decompose µ = µx ⊗ µy, where:

µx([x 7→ tt]) , 1/2 µx([x 7→ ff ]) , 1/2
µy([y 7→ tt]) , 1/2 µy([y 7→ ff ]) , 1/2

So, µ v µx ◦ µy
I Next, µx |= UnifB[x] and µy |= UnifB[y]

I So by definition, µ |= UnifB[x] ∗ UnifB[y]



Example: Distribution Assertions

Suppose µ has two variables x, y, indep. fair coin flips

µ([x 7→ tt, y 7→ tt]) = 1/4 µ([x 7→ tt, y 7→ ff ]) = 1/4
µ([x 7→ ff , y 7→ tt]) = 1/4 µ([x 7→ ff , y 7→ ff ]) = 1/4

Then: µ satisfies UnifB[x] ∗ UnifB[y]. Why?
I We can decompose µ = µx ⊗ µy, where:

µx([x 7→ tt]) , 1/2 µx([x 7→ ff ]) , 1/2
µy([y 7→ tt]) , 1/2 µy([y 7→ ff ]) , 1/2

So, µ v µx ◦ µy
I Next, µx |= UnifB[x] and µy |= UnifB[y]
I So by definition, µ |= UnifB[x] ∗ UnifB[y]



Example: Distribution Assertions

Suppose µ has two variables x, y, indep. fair coin flips

µ([x 7→ tt, y 7→ tt]) = 1/4 µ([x 7→ tt, y 7→ ff ]) = 1/4
µ([x 7→ ff , y 7→ tt]) = 1/4 µ([x 7→ ff , y 7→ ff ]) = 1/4

Then: µ satisfies UnifB[x] ∗ UnifB[y]. Why?
I We can decompose µ = µx ⊗ µy, where:

µx([x 7→ tt]) , 1/2 µx([x 7→ ff ]) , 1/2
µy([y 7→ tt]) , 1/2 µy([y 7→ ff ]) , 1/2

So, µ v µx ◦ µy
I Next, µx |= UnifB[x] and µy |= UnifB[y]
I So by definition, µ |= UnifB[x] ∗ UnifB[y]



Example Axioms

Equality and distributions
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A Probabilistic Separation Logic



Program Logic Judgments in PSL

P and Q from probabilistic BI, c a probabilistic program

{P} c {Q}

Validity
For all input states s ∈ Distr(M(X )) satisfying the
pre-condition s |= P , the output state JcKs satisfies the
post-condition JcKs |= Q.
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Perfectly fits the transformer semantics for pWhile

Under transformer semantics:
I P describes: a distribution over memories (input)
I Q describes: a distribution over memories (output)

Under monadic semantics: mismatch!
I P describes: a distribution over memories
I But input to program: a single memory



How do we prove these judgments?

Validity
For all input states s ∈ Distr(M(X )) satisfying the
pre-condition s |= P , the output state JcKs satisfies the
post-condition JcKs |= Q.

Proving validity directly is di�cult
I Must unfold definition of JcK as a function
I Then prove property of function by working with definition

Things that would make proving judgments easier:
I Compositionality: prove property of bigger program by

combining proofs of properties of sub-programs
I Avoid unfolding definition of program semantics
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Solution: define a set of proof rules (a proof system)

Each proof rule look like:

{P1} c1 {Q1} · · · {Pn} cn {Qn}
{P} c {Q}

RuleName

Proof rules mean:
I To prove {P} c {Q}
I We just have to prove {P1} c1 {Q1}, . . . , {Pn} cn {Qn}

Why do proof rules help?
I Programs c1, . . . , cn are smaller/simpler than c
I If c can’t be broken down, no premises (n = 0)
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The Proof System of PSL
Basic Rules



Basic Proof Rules in PSL: Assignment

Assignment Rule

x /∈ FV (e)
{>} x← e {x = e}

Assn

How to read this rule?
From any initial distribution, running x← e will lead to a
distribution where x equals e with probability 1 (assuming x
doesn’t appear in e).
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Basic Proof Rules in PSL: Sampling

Sampling Rule

{>} x $← Flip {UnifB[x]}
Samp

How to read this rule?
From any initial distribution, running x $← Flip will lead to a
distribution where x is a uniformly distributed Boolean.
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Basic Proof Rules in PSL: Sequencing

Sequencing Rule

{P} c1 {Q} {Q} c2 {R}
{P} c1 ; c2 {R}

Seq

How to read this rule?
I If: from any distribution satisfying P , running c1 leads to a

distribution satisfying R
I If: from any distribution satisfying R, running c2 leads to a

distribution satisfying Q
I Then: from any distribution satisfying P , running c1 ; c2

leads to a distribution satisfying Q
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The Proof System of PSL
Conditional Rule



Conditional Rule: first try

Does this rule work?

{e = tt ∧ P} c {Q} {e = ff ∧ P} c′ {Q}
{P} if e then c else c′ {Q}

Cond?



Rule Cond? is not sound!

Take P to be UnifB[e] and Q to be ⊥:

{e = tt ∧UnifB[e]} c {⊥} {e = ff ∧UnifB[e]} c′ {⊥}
{UnifB[e]} if e then c else c′ {⊥}

Cond?

Premises are valid...
There is no distribution satisfying e = tt ∧UnifB[e] or
e = ff ∧UnifB[e], so pre-conditions are ⊥ and the premises are
trivially valid.

But the conclusion is not!
It is not the case that if UnifB[e] in the input distribution, then
running if e then c else c′ will lead to an impossible output
distribution!
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What went wrong?

The broken rule

{e = tt ∧ P} c {Q} {e = ff ∧ P} c′ {Q}
{P} if e then c else c′ {Q}

Cond?

The problem: conditioning
I We assume: P holds in input distribution µ
I Inputs to branches: µ conditioned on e = tt and e = ff
I But: P might not hold on conditional distributions!
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Conditional Rule: second try

Does this rule work?

{e = tt ∗ P} c {Q} {e = ff ∗ P} c′ {Q}
{[e] ∗ P} if e then c else c′ {Q}

Cond??

Previous counterexample fails
If we take P to be UnifB[e], then [e] ∗ UnifB[e] is false, and the
conclusion is trivially valid.



Conditional Rule: second try

Does this rule work?

{e = tt ∗ P} c {Q} {e = ff ∗ P} c′ {Q}
{[e] ∗ P} if e then c else c′ {Q}

Cond??

Previous counterexample fails
If we take P to be UnifB[e], then [e] ∗ UnifB[e] is false, and the
conclusion is trivially valid.



But rule Cond?? is still not sound!

Consider this proof

{e = tt ∗ >} x← e {[x] ∗ [e]} {e = ff ∗ P} x← e {[x] ∗ [e]}
{[e] ∗ >} if e then x← e else x← e {[x] ∗ [e]}

Cond??

Premises are valid...
In the output of each branch, x and e are independent since e
is deterministic.

But the conclusion is not!
In the output of the conditional, x and e are clearly not always
independent: they are equal, and they might be randomized!
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What went wrong?

The broken rule

{e = tt ∗ P} c {Q} {e = ff ∗ P} c′ {Q}
{[e] ∗ P} if e then c else c′ {Q}

Cond??

The problem: mixing
I Suppose: Q holds in the outputs of both branches
I The output of the conditional is a convex combination of

the branch outputs
I But: Q might not hold in the convex combination!
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Conditional Rule in PSL

Fixed rule

{e = tt ∗ P} c {Q}
{e = ff ∗ P} c′ {Q}

Q is closed under mixtures (CM)
{[e] ∗ P} if e then c else c′ {Q}

Cond

Pre-conditions
I Inputs to branches derived from conditioning on e
I Independence ensures that P holds after conditioning

Post-conditions
I Not all post-conditions Q can be soundly combined
I “Closed under mixtures” needed for soundness
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CM properties: Closed under Mixtures

An assertion Q is CM if it satisfies:
If µ1 |= Q and µ2 |= Q, then µ1 ⊕p µ2 |= Q for any p ∈ [0, 1].

Examples of CM assertions
I x = e

I UnifB[x]

Examples of non-CM assertions
I [x] ∗ [y]
I x = 1 ∨ x = 2
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Example: using the conditional rule

Consider the program:

if x then z ← ¬y else z ← y

If x is true, negate y and store in z. Otherwise store y into z.

Using the conditional rule:

{x = tt ∗ UnifB[y]} z ← ¬y {UnifB[z]}
{x = ff ∗ UnifB[y]} z ← y {UnifB[z]}

UnifB[z] is closed under mixtures (CM)
{[x] ∗ UnifB[y]} if x then z ← ¬y else z ← y {UnifB[z]}

Cond
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The Proof System of PSL
Frame Rule



The Frame Rule in SL

Properties about unmodified heaps are preserved

{P} c {Q} c doesn’t modify FV (R)
{P ∗ R} c {Q ∗ R}

Frame

So-called “local reasoning” in SL
I Only need to reason about part of heap used by c
I Note: doesn’t hold if ∗ replaced by ∧, due to aliasing!
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Why is the Frame rule important?

In SL: simplify reasoning
I Program c may only modify a small part of the heap
I Rest of heap may be complicated (linked lists, trees, etc.)
I Automatically preserve any assertion about rest of heap,

as long as rest of heap is separate from what c touches

In PSL: preserve independence
I Assume: in input, variable x is independent of what c uses
I Conclude: in output, x is independent of what c touches
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The Frame Rule in PSL
The rule

{P} c {Q} FV (R) ∩MV (c) = ∅
|= P → [RV (c)] FV (Q) ⊆ RV (c) ∪WV (c)

{P ∗ R} c {Q ∗ R}
Frame

Side conditions

1. Variables in R are not modified
2. P describes all variables that might be read
3. Everything in Q is freshly written, or in P

Variables in the Q were independent of R,
or are newly independent of R
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Example: Deriving a Better Sampling Rule
Original sampling rule:

{>} x $← Flip {UnifB[x]}
Samp

Frame rule:

{P} c {Q} FV (R) ∩MV (c) = ∅
|= P → [RV (c)] FV (Q) ⊆ RV (c) ∪WV (c)

{P ∗ R} c {Q ∗ R}
Frame

Can derive:

x /∈ FV (R)
{R} x $← Flip {UnifB[x] ∗ R}

Samp*

Intuitively: fresh random sample is independent of everything
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A Probabilistic Separation Logic
Soundness Theorem



Proof rules can only show valid judgments

Theorem
If {P} c {Q} is derivable via the proof rules, then {P} c {Q} is
a valid judgment: for all initial distributions µ, if µ |= P then
JcKµ |= Q.

Key property for soundness: restriction
Let P be any formula of probabilistic BI, and suppose that
s |= P . Then there exists s′ v s such that s′ |= P and
dom(s′) = dom(s) ∩ FV (P ).

Intuition
I The only variables that “matter” for P are FV (P )
I Tricky for implications; proof “glues” distributions



Verifying an Example



One-Time-Pad (OTP)

Possibly the simplest encryption scheme
I Input: a message m ∈ B
I Output: a ciphertext c ∈ B
I Idea: encrypt by taking xor with a uniformly random key k

The encoding program:

k $← Flip#
c← k ⊕m



One-Time-Pad (OTP)

Possibly the simplest encryption scheme
I Input: a message m ∈ B
I Output: a ciphertext c ∈ B
I Idea: encrypt by taking xor with a uniformly random key k

The encoding program:

k $← Flip#
c← k ⊕m



How to Formalize Security?

Method 1: Uniformity
I Show that c is uniformly distributed
I Always the same, no matter what the message m is

Method 2: Input-output independence
I Assume that m is drawn from some (unknown) distribution
I Show that c and m are independent
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Proving Input-Output Independence for OTP in PSL

{[m]} assumption

k $← Flip#

{[m] ∗ UnifB[k]} [Samp*]

c← k ⊕m

{[m] ∗ UnifB[k] ∧ c = k ⊕m} [Assn*]

{[m] ∗ UnifB[c]} XOR axiom
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PSL: references and further reading
The original paper on probabilistic semantics
Kozen. Semantics of Probabilistic Programs. FOCS 1980.

Unifying survey on Bunched Implications
Docherty. Bunched Logics: A Uniform Approach. PhD Thesis
(UCL), 2019.

A Probabilistic Separation Logic (POPL20)
I Extensions to PSL: deterministic variables, loops, etc.
I Many examples from cryptography, security of ORAM
I https://arxiv.org/abs/1907.10708

A Bunched Logic for Conditional Independence (LICS21)
I A BI-style logic called DIBI for conditional independence
I A separation logic (CPSL) based on DIBI
I https://arxiv.org/abs/2008.09231

https://arxiv.org/abs/1907.10708
https://arxiv.org/abs/2008.09231


Reasoning about Probabilistic Programs
Higher-Order Languages



So far: reasoning about pWhile programs

First part
I Monadic semantics: LcM :M→ Distr(M)
I Verification method: weakest pre-expectations (wpe)

Second part
I Transformer semantics: JcK : Distr(M)→ Distr(M)
I Verification method: probabilistic separation logic (PSL)



Today: probabilistic higher-order programs

What’s missing from pWhile?
I First-order programs only
I That is: can’t pass functions to other functions

This is OPLSS: where are the functions?
I How about probabilistic functional languages?
I What do the type systems look like?



With a Probability Monad:
A Simple Functional Language



Operations on distributions: unit

The simplest possible distribution
Dirac distribution: Probability 1 of producing a particular
element, and probability 0 of producing anything else.

Distribution unit
Let a ∈ A. Then unit(a) ∈ Distr(A) is defined to be:

unit(a)(x) =
{

1 : x = a

0 : otherwise

Why “unit”? The unit (“return”) of the distribution monad.



Operations on distributions: bind

Sequence two sampling instructions together
Draw a sample x, then draw a sample from a distribution f(x)
depending on x. Transformation map f is randomized: function
A→ Distr(B).

Distribution bind
Let µ ∈ Distr(A) and f : A→ Distr(B). Then
bind(µ, f) ∈ Distr(B) is defined to be:

bind(µ, f)(b) ,
∑
a∈A

µ(a) · f(a)(b)



Language: probabilistic monadic lambda calculus
Language grammar: core

E 3 e := x ∈ X | λX . E | E E | fix X . λX . E (lambda calc.)

Language grammar: base types

E 3 e := · · · | b ∈ B | if E then E else E (booleans)
| n ∈ N | add(E , E) (numbers)

Language grammar: probabilistic part

E 3 e := · · · | Flip | Roll (distributions)
| return(E) (unit)
| sample X = E in E (bind)
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Example programs

Sum of two dice rolls

sample x = Roll in
sample y = Roll in
return(add(x, y))

Geometric distribution

(fix geo. λn.
sample stop = Flip in
if stop then return(n) else geo add(n, 1)) 0
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Operational semantics: One-step reduction

Definition
The one-step relation→ : CE → Distr(CE) maps closed
expressions to distributions on closed expressions:

e→ µ

Reading
“Expression e steps to distribution µ on expressions in one
step”.



Operational semantics: Multi-step reduction

Definition
For any n ∈ N, the multi-step relation⇒n : CE → SDistr(CV)
maps closed expressions to sub-distributions on closed values.

e⇒n µ

Reading
“Expression e steps to sub-distribution µ on values in exactly n
steps”.



Operational semantics: Big-step reduction

Definition
The multi-step relation⇒ : CE → SDistr(CV) maps closed
expressions to sub-distributions on closed values.

e⇒ µ

Reading
“Expression e steps to sub-distribution µ on values”.
Define as limit of approximants: if e⇒n µn, then
e⇒ limk→∞

∑k
n=1 µn



Operational semantics: non-probabilistic part

Standard call-by-value semantics

(λx. e) v → unit(e[v/x])
if tt then e else e′ → unit(e)
if ff then e else e′ → unit(e′)

(fix f. λx. e) v → unit(e[(fix f. λx. e)/f ][v/x])
add(n, n′)→ unit(n+ n′)

. . .



Operational semantics: primitive distributions

Notation
We write {v1 : p1, . . . , vn : pn} or {vi : pi}i∈I for the distribution
that produces vi with probability pi.

Step to distributions on values

Flip→ {tt : 1/2,ff : 1/2}
Roll→ {1 : 1/6, . . . , 6 : 1/6}



Operational semantics: unit and bind

Unit

e→ e′

return(e)→ return(e′)

Bind

e→ {vi : pi}i∈I
sample x = e in e′ → {e′[vi/x] : pi}i∈I



A Simple Probabilistic Type System



Types in our language

T 3 τ := B | N (base types)
| T → T (functions)
| ©T (distributions)



Typing judgment basics

The main judgment
Let e ∈ E , τ ∈ T , and Γ be a finite list of of bindings
x1 : τ1, . . . , xn : τn. Then the typing judgment is:

Γ ` e : τ

Reading
If we substitute closed values v1, . . . , vn for variables x1, . . . , xn
in e, then the result either reduces to unit(v) if τ is
non-probabilistic, or reduces to a sub-distribution over closed
values if τ is probabilistic (of the form©τ ).



Typing rules: variables and functions

Exactly the same as in lambda calculus

x : τ ∈ Γ
Γ ` x : τ

Var
Γ, x : τ ` e : τ ′

Γ ` λx. e : τ → τ ′
Lam

Γ ` e : τ → τ ′

Γ ` e′ : τ
Γ ` e e′ : τ ′

App
Γ, f : τ → τ ′ ` λx. e : τ → τ ′

Γ ` fix f. λx. e : τ → τ ′
Fix



Typing rules: booleans and integers

Hopefully not too surprising

b = tt,ff
Γ ` b : B

Bool
n ∈ N

Γ ` n : N
Nat

Γ ` e : N
Γ ` e′ : N

Γ ` add(e, e′) : N
Add



Typing rules: primitive distributions

Assign distribution types

Γ ` Flip :©B
flip

Γ ` Roll :©N
roll



Typing rules: unit and bind

Unit

Γ ` e : τ
Γ ` return(e) :©τ

Return

Bind

Γ ` e :©τ Γ, x : τ ` e′ :©τ ′

Γ ` sample x = e in e′ :©τ ′
Sample



What property do we want the types to ensure?

Non-probabilistic types
If e ∈ CE has non-probabilistic type τ , then e should reduce to
unit(v) with v ∈ CV of type τ , or loop forever.

Probabilistic types
If e ∈ CE has probabilistic type©τ , then e should reduce to
µ ∈ SDistr(CV) where every element in the support of µ has
type τ .



Monadic Type Systems:
A Closer Look



What else can we do with a monadic type system?

So far: describe type of a distribution
If a program e has type©N, then:
I It evaluates to a sub-distribution over N: samples drawn

from the distribution will always be natural numbers.
I It never gets stuck (runtime error) during evaluation.

But what other properties can we handle?
I Produces a uniform distribution
I Produces a distribution that has probability 1/4 of

returning an even number
I . . .



The key typing rule: Sample

Γ ` e :©τ Γ, x : τ ` e′ :©τ ′

Γ ` sample x = e in e′ :©τ ′
Sample

Let’s unpack this rule

1. e is a distribution over τ
2. Given a sample x : τ , e′ produces a distribution over τ ′

3. Sampling from e and plugging into e′: distribution over τ ′
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Generalizing the rule

Γ ` e : Pτ Γ, x : τ ` e′ : Qτ ′

Γ ` sample x = e in e′ : Qτ ′
SampleGen

Let’s change the meaning of the distribution type

1. e is a distribution over τ satisfying P
2. Given a sample x : τ , e′ produces a distribution over τ ′

satisfying Q
3. Sampling from e and plugging into e′ produces a

distribution over τ ′ satisfying Q

For what distribution properties Q is this rule OK?
Does this remind you of something we have seen already?
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CM properties: Closed under Mixtures

An assertion Q is CM if it satisfies:
If µ1 |= Q and µ2 |= Q, then µ1 ⊕p µ2 |= Q for any p ∈ [0, 1].

Examples of CM assertions
I x = e

I UnifB[x]

Examples of non-CM assertions
I [x] ∗ [y]
I x = 1 ∨ x = 2



The main requirement: closed under mixtures (CM)

Γ ` e : Pτ Γ, x : τ ` e′ : Qτ ′

Γ ` sample x = e in e′ : Qτ ′
SampleGen

The property Q must be closed under mixtures (CM)

1. We have a bunch of distributions over τ ′ satisfying Q
2. We are blending these distributions together
3. We want the resulting distribution to also satisfy Q
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SampleGen

The property Q must be closed under mixtures (CM)
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Example: monadic types for uniformity

Type of uniform distributions Uτ
Meaning: when τ is a finite type (e.g., B), a program e has type
Uτ if it evaluates to the uniform distribution over τ without
encountering any runtime errors.

Then the sampling rule is sound:

Γ ` e :©τ Γ, x : τ ` e′ : Uτ ′

Γ ` sample x = e in e′ : Uτ ′
SampleUnif



Monadic Type Systems:
Generalizing to Graded Monads



From monads to graded monads

Instead of one monad, have a family of monads
I M is a monoid with a pre-order (e.g., (R, 0,+,≤))
I Each monadic type has an index α ∈M

Intuition
I Graded monads: di�erent kinds of the same monad
I Smaller index: less information/weaker guarantee
I Index carries additional information “on the side”
I Indexes combine through the bind rule
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Changes to the type system
New types

T 3 τ := · · · | ©ατ (α ∈M)

New typing rules

Γ ` e : τ
Γ ` return(e) :©0τ

GReturn

Γ ` e :©ατ Γ, x : τ ` e′ :©βτ
′

Γ ` sample x = e in e′ :©α+βτ
′ GSample

Γ ` e :©α α ≤ β
Γ ` e :©β

GSubty



Monadic types: references and further readings
Original papers on probabilistic monadic types
I Ramsey and Pfe�er. Stochastic lambda calculus and

monads of probability distributions. POPL 2002.
I Park, Pfenning, and Thrun. A Probabilistic Language based

upon Sampling Functions. POPL 2005.

Di�erential privacy typing
I Key ingredients: (bounded) linear types and a monad
I Reed and Pierce. Distance makes the types grow stronger:

a calculus for di�erential privacy. ICFP 2010.

Hoare2: probabilistic relational properties by typing
I Key ingredients: Refinement types and a graded monad.
I Higher-Order Approximate Relational Refinement Types for

Mechanism Design and Di�erential Privacy. POPL 2015.



Beyond Monadic Types:
Two Representative Systems



Monadic type systems: the good and the bad

The good
I Clean separation between deterministic and randomized
I Always treat variables as values, not distributions

The bad
I Class of properties is limited
I All properties everywhere must be CM (cf. PSL)



PCF⊕

Main features
I Makes τ and©τ the same: no more monad!
I Call-by-value: sample when passing arguments to fn.

What kinds of properties can be expressed in types?
I No monad type, but let-binding rule is similar to Sample
I Seems to need the CM condition



PCF⊕: Reading the typing judgment

Judgments look like

x1 : τ1, . . . , xn : τn ` e : τ

Reading
For any well-typed closing substitution of values v1, . . . , vn for
x1, . . . xn, the expression e evaluates to distribution over τ .



PPCF

Main features
I Makes τ and©τ the same: no more monad!
I Call-by-name: functions can take distributions
I Let-binding construct used to force sampling

What kinds of properties can be expressed in types?
I Function calls don’t force sampling
I Let-binding, if-then-else, all force sampling



PPCF: Reading the typing judgment

Judgments look like

x1 : τ1, . . . , xn : τn ` e : τ

Reading
For any well-typed closing substitution of distributions
µ1, . . . , µn for µ1, . . . µn, the expression e evaluates to some
distribution over τ .
But note that µ1, . . . , µn are entirely separate distributions:
draws from µ1, . . . , µn are always independent.



Many technical extensions

Richer distributions
I Continuous distributions
I Distributions over function spaces

Richer types
I Recursive types, linear types, . . .

Richer language features
I Most notably: conditioning constructs (“observe”/“score”)



Higher-order programs: references and readings
Semantics
I Saheb-Djahromi. CPO’s of Measures for Non-determinism.

1979.
I Jones and Plotkin. A Probabilistic Powerdomain of

Evaluations. 1989.
I Heunen, Kammar, Staton, Yang. A Convenient Category for

Higher-Order Probability Theory. 2017.

Type systems
I PCF⊕: Dal Lago

(https://doi.org/10.1017/9781108770750.005)
I PPCF: Erhard, Pagani, Tasson. Measurable Cones and

Stable, Measurable Functions. 2018.
I Darais, Sweet, Liu, Hicks. A language for probabilistically

oblivious computation. POPL 2020.

https://doi.org/10.1017/9781108770750.005


Reasoning about Probabilistic Programs
Wrapping up



Day 1: Introducing Probabilistic Programs
I Motivations and key questions
I Mathematical preliminaries

Day 2: First-Order Programs 1
I Probabilistic While language, monadic semantics
I Weakest pre-expectation calculus

Day 3: First-Order Programs 2
I Probabilistic While language, transformer semantics
I Probabilistic separation logic

Day 4: Higher-Order Programs
I Type system: probability monad
I Type system: probabilistic PCF



Main takeaways

There are multiple semantics for probabilistic programs
I We saw: monadic semantics, and transformer semantics
I Choice of semantics influences what verification is possible

Standard verification methods, to probabilistic programs
I Weakest pre-conditions to weakest pre-expectations
I Separation logic to Probabilistic separation logic
I Type systems, monads, . . .

Verification currently better for imperative programs
I Wide variety of Hoare logics proving interesting properties
I Type systems for probabilistic programs: active research



Where to go next
More semantics
I Lots of recent research on categorical semantics (e.g., QBS)

Learn about conditioning
I Mostly implementation (hard), but recently verification too

Verifying specific properties
I Expected running time, probabilistic termination, . . .

Interesting applications
I Cryptography, di�erential privacy, machine learning, . . .

Read: Foundations of Probabilistic Programming
I Open-access book, 15 chapters by leading researchers

https://doi.org/10.1017/9781108770750

https://doi.org/10.1017/9781108770750
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