Jointly Private Convex Programming "PRIVDUDE"

Justin Hsu¹, Zhiyi Huang², Aaron Roth¹, Steven Zhiwei Wu¹

¹University of Pennsylvania ²University of Hong Kong

January 10, 2016

One hot summer...not enough electricity!

Solution: Turn off air-conditioning

Decide when customers get electricity

- Divide day into time slots
- Customers have values for slots
- Customers have hard minimum requirements for slots

Goal: maximize welfare

Constants (Inputs to the problem)

- Customer *i*'s value for electricity in time slot $t: v_t^{(i)} \in [0, 1]$
- ▶ Customer *i*'s minimum requirement: $d_t^{(i)} \in [0, 1]$
- ▶ Total electricity supply in time slot t: $s_t \in \mathbb{R}$

Constants (Inputs to the problem)

- Customer *i*'s value for electricity in time slot $t: v_t^{(i)} \in [0, 1]$
- ▶ Customer *i*'s minimum requirement: $d_t^{(i)} \in [0, 1]$
- ▶ Total electricity supply in time slot t: $s_t \in \mathbb{R}$

Variables (Outputs)

• Electricity level for user *i*, time *t*: $x_t^{(i)}$

Maximize welfare

 $\max \sum_{i,t} v_t^{(i)} \cdot x_t^{(i)}$

Maximize welfare

$$\max \sum_{i,t} v_t^{(i)} \cdot x_t^{(i)}$$

...subject to constraints

► Don't exceed power supply:

$$\sum_i x_t^{(i)} \le s_t$$

Maximize welfare

$$\max \sum_{i,t} v_t^{(i)} \cdot x_t^{(i)}$$

...subject to constraints

Don't exceed power supply:

$$\sum_i x_t^{(i)} \leq s_t$$

► Meet minimum energy requirements:

$$x_t^{(i)} \ge d_t^{(i)}$$

Privacy concerns

Private data

- Values $v_t^{(i)}$ for time slots
- Customer requirements $d_t^{(i)}$

Privacy concerns

Private data

- Values $v_t^{(i)}$ for time slots
- Customer requirements $d_t^{(i)}$

Customers shouldn't learn private data of others

Convex program

► Want to maximize:

$$\sum_{i} f^{(i)}(x^{(i)}) \qquad f^{(i)} \text{ concave}$$

Convex program

► Want to maximize:

$$\sum_{i} f^{(i)}(x^{(i)}) \qquad \qquad f^{(i)} \text{ concave}$$

Coupling constraints:

$$\sum_{i} g_j^{(i)}(x^{(i)}) \le h_j \qquad \qquad g_j^{(i)} \text{ convex}$$

Convex program

► Want to maximize:

$$\sum_{i} f^{(i)}(x^{(i)}) \qquad \qquad f^{(i)} \text{ concave}$$

Coupling constraints:

$$\sum_{i} g_j^{(i)}(x^{(i)}) \le h_j \qquad \qquad g_j^{(i)} \text{ convex}$$

Personal constraints:

$$x^{(i)} \in S^{(i)}$$
 $S^{(i)}$ convex

Key feature: separable

• Partition variables: Agent *i*'s "part" of solution is $x^{(i)}$

Agent *i*'s private data affects:

- ► Objective f⁽ⁱ⁾
- Coupling constraints $g_i^{(i)}$
- Personal constraints $S^{(i)}$

Examples

- Matching LP
- d-demand fractional allocation
- Multidimensional fractional knapsack

Our results, in one slide

Theorem

Let $\varepsilon > 0$ be a privacy parameter. For a separable convex program with k coupling constraints, there is an efficient algorithm for privately finding a solution with objective at least

$$\mathsf{OPT} - O\left(\frac{k}{\varepsilon}\right),$$

and exceeding constraints by at most k/ε in total.

No polynomial dependence on number of variables

The plan today

- Convex program solution \leftrightarrow equilibrium of a game
- Compute equilibrium via gradient descent
- ► Ensure privacy

The convex program game

The convex program two-player, zero-sum game

The players

- ▶ Primal player: plays candidate solutions $x \in S^{(1)} \times \cdots \times S^{(n)}$
- Dual player: plays dual solutions λ

The convex program two-player, zero-sum game

The players

- ▶ Primal player: plays candidate solutions $x \in S^{(1)} \times \cdots \times S^{(n)}$
- Dual player: plays dual solutions λ

The payoff function

 Move constraints depending on multiple players (coupling constraints) into objective as penalty terms

$$\mathcal{L}(x,\lambda) = \sum_{i} f^{(i)}(x^{(i)}) + \sum_{j} \lambda_j \left(\sum_{i} g_j^{(i)}(x^{(i)}) - h_j \right)$$

Primal player maximizes, dual player minimizes

Idea: Solution \leftrightarrow equilibrium

Convex duality

- Optimal solution x^* gets payoff OPT versus any λ
- Optimal dual λ^* gets payoff at least $-\mathsf{OPT}$ versus any x

In game theoretic terms...

- ► The value of the game is OPT
- Optimal primal-dual solution (x^*, λ^*) is an equilibrium

Idea: Solution \leftrightarrow equilibrium

Convex duality

- Optimal solution x^* gets payoff OPT versus any λ
- Optimal dual λ^* gets payoff at least $-\mathsf{OPT}$ versus any x

In game theoretic terms...

- ► The value of the game is OPT
- Optimal primal-dual solution (x^*, λ^*) is an equilibrium

Find an equilibrium to find an optimal solution

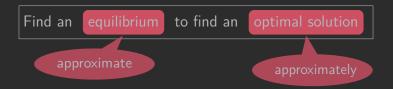
Idea: Solution \leftrightarrow equilibrium

Convex duality

- ▶ Optimal solution x^* gets payoff OPT versus any λ
- Optimal dual λ^* gets payoff at least $-\mathsf{OPT}$ versus any x

In game theoretic terms...

- ► The value of the game is OPT
- Optimal primal-dual solution (x^*, λ^*) is an equilibrium



Finding the equilibrium

Known: techniques for finding equilibrium [FS96]

Simulated play

- ► First player chooses the action *x*_t with best payoff
- ► Second player uses a no-regret algorithm to select action λ_t
- Use payoff $\mathcal{L}(x_t, \lambda_t)$ to update the second player
- Repeat

Known: techniques for finding equilibrium [FS96]

Simulated play

- ► First player chooses the action *x*_t with best payoff
- ► Second player uses a no-regret algorithm to select action λ_t
- Use payoff $\mathcal{L}(x_t, \lambda_t)$ to update the second player
- Repeat

Key features

- Average of (x_t, λ_t) converges to approximate equilibrium
- Limited access to payoff data, can be made private

Gradient descent dynamics (linear case)

Idea: repeatedly go "downhill"

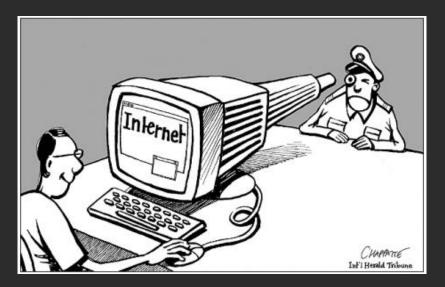
• Given primal point $x_t^{(i)}$, gradient of $\mathcal{L}(x_t, -)$ is

$$\ell_j = \sum_i g_j^{(i)} \cdot x_t^{(i)} - h_j$$

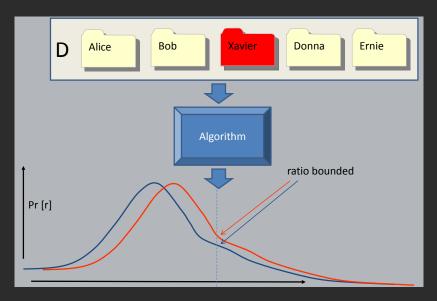
► Update:

 $\lambda_{t+1} = \lambda_t - \eta \cdot \ell$

Achieving privacy



(Plain) Differential privacy [DMNS06]



More formally

Definition (DMNS06)

Let *M* be a randomized mechanism from databases to range \mathcal{R} , and let *D*, *D'* be databases differing in one record. *M* is (ε, δ) -differentially private if for every $S \subseteq \mathcal{R}$,

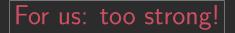
 $\Pr[M(D) \in S] \leq e^{\varepsilon} \cdot \Pr[M(D') \in S] + \delta.$

More formally

Definition (DMNS06)

Let *M* be a randomized mechanism from databases to range \mathcal{R} , and let *D*, *D'* be databases differing in one record. *M* is (ε, δ) -differentially private if for every $S \subseteq \mathcal{R}$,

 $\Pr[M(D) \in S] \leq e^{\varepsilon} \cdot \Pr[M(D') \in S] + \delta.$



A relaxed notion of privacy [KPRU14]

Idea

- ► Give separate outputs to agents
- Group of agents can't violate privacy of other agents

A relaxed notion of privacy [KPRU14]

Idea

- ► Give separate outputs to agents
- Group of agents can't violate privacy of other agents

Definition

An algorithm $\mathcal{M}: \mathbb{C}^n \to \Omega^n$ is (ε, δ) -joint differentially private if for every agent *i*, pair of *i*-neighbors $D, D' \in \mathbb{C}^n$, and subset of outputs $S \subseteq \Omega^{n-1}$,

$$\Pr[\mathcal{M}(D)_{-i} \in S] \leq \exp(\varepsilon) \Pr[\mathcal{M}(D')_{-i} \in S] + \delta.$$

Achieving joint differential privacy

"Billboard" mechanisms

- ► Compute signal S satisfying standard differential privacy
- ► Agent *i*'s output is a function of *i*'s private data and *S*

Achieving joint differential privacy

"Billboard" mechanisms

- ► Compute signal S satisfying standard differential privacy
- ► Agent *i*'s output is a function of *i*'s private data and *S*

Lemma (Billboard lemma [HHRRW14])

Let $S : \mathcal{D} \to S$ be (ε, δ) -differentially private. Let agent i have private data $D_i \in \mathcal{X}$, and let $F : \mathcal{X} \times S \to \mathcal{R}$. Then the mechanism

 $M(D)_i = F(D_i, S(D))$

is (ε, δ) -joint differentially private.

Our signal: noisy dual variables

Privacy for the dual player

Recall gradient is

$$\ell_j = \sum_i g_j^{(i)} \cdot x_t^{(i)} - h_j$$

► May depend on private data in a low-sensitivity way

Our signal: noisy dual variables

Privacy for the dual player

► Recall gradient is

$$\ell_j = \sum_i g_j^{(i)} \cdot x_t^{(i)} - h_j$$

- May depend on private data in a low-sensitivity way
- ► Use Laplace mechanism to add noise, "noisy gradient":

$$\hat{\ell}_j = \sum_i g_j^{(i)} \cdot x_t^{(i)} - h_j + Lap(\Delta/arepsilon)$$

Noisy gradients satisfy standard differential privacy

Private action: best response to dual variables

(Joint) privacy for the primal player

► Best response problem:

$$\max_{x \in S} \mathcal{L}(x, \lambda_t) = \max_{x \in S} \sum_{i} f^{(i)} \cdot x^{(i)} + \sum_{j} \lambda_{j,t} \left(\sum_{i} g_j^{(i)} \cdot x^{(i)} - h_j \right)$$

Private action: best response to dual variables

(Joint) privacy for the primal player

► Best response problem:

$$\max_{x \in S} \mathcal{L}(x, \lambda_t) = \max_{x \in S} \sum_{i} f^{(i)} \cdot x^{(i)} + \sum_{j} \lambda_{j,t} \left(\sum_{i} g_j^{(i)} \cdot x^{(i)} - h_j \right)$$

Can optimize separately:

$$\max_{\boldsymbol{x}^{(i)} \in \boldsymbol{S}^{(i)}} f^{(i)} \cdot \boldsymbol{x}^{(i)} + \sum_{j} \lambda_{j,t} \left(\boldsymbol{g}_{j}^{(i)} \cdot \boldsymbol{x}^{(i)} \right)$$

Private action: best response to dual variables

(Joint) privacy for the primal player

► Best response problem:

$$\max_{x \in S} \mathcal{L}(x, \lambda_t) = \max_{x \in S} \sum_{i} f^{(i)} \cdot x^{(i)} + \sum_{j} \lambda_{j,t} \left(\sum_{i} g_j^{(i)} \cdot x^{(i)} - h_j \right)$$

Can optimize separately:

$$\max_{\mathbf{x}^{(i)} \in S^{(i)}} f^{(i)} \cdot x^{(i)} + \sum_{j} \lambda_{j,t} \left(g_j^{(i)} \cdot x^{(i)} \right)$$

► Key point: optimization for x⁽ⁱ⁾ depends only on λ and functions of i's private data (S⁽ⁱ⁾, f⁽ⁱ⁾, g⁽ⁱ⁾)

The algorithm: $\operatorname{PRIVDUDE}$

• For iterations $t = 1, \ldots, T$:

The algorithm: $\operatorname{PRIVDUDE}$

- For iterations $t = 1, \ldots, T$:
- For i = 1, ..., n, compute best response:

$$x_t^{(i)} = \max_{x \in \mathcal{S}^{(i)}} f^{(i)} \cdot x - \sum_j \lambda_{j,t}(g_j^{(i)} \cdot x)$$

The algorithm: PRIVDUDE

- For iterations $t = 1, \ldots, T$:
- For i = 1, ..., n, compute best response:

$$x_t^{(i)} = \max_{x \in \mathcal{S}^{(i)}} f^{(i)} \cdot x - \sum_j \lambda_{j,t}(g_j^{(i)} \cdot x)$$

▶ For coupling constraints j = 1, ..., k, compute noisy gradient:

$$\hat{\ell}_{j,t} = \sum_{i} g_{j}^{(i)} \cdot x_{t}^{(i)} - h_{j} + Lap(\Delta/arepsilon)$$

The algorithm: PRIVDUDE

• For iterations $t = 1, \ldots, T$:

• For i = 1, ..., n, compute best response:

$$x_t^{(i)} = \max_{x \in \mathcal{S}^{(i)}} f^{(i)} \cdot x - \sum_j \lambda_{j,t}(g_j^{(i)} \cdot x)$$

• For coupling constraints j = 1, ..., k, compute noisy gradient:

$$\hat{\ell}_{j,t} = \sum_{i} \mathsf{g}_{j}^{(i)} \cdot \mathsf{x}_{t}^{(i)} - \mathsf{h}_{j} + \mathsf{Lap}(\Delta/arepsilon)$$

Do gradient descent update:

$$\lambda_{t+1} = \lambda_t - \eta \cdot \hat{\ell}_t$$

The algorithm: PRIVDUDE

• For iterations $t = 1, \ldots, T$:

• For i = 1, ..., n, compute best response:

$$x_t^{(i)} = \max_{x \in \mathcal{S}^{(i)}} f^{(i)} \cdot x - \sum_j \lambda_{j,t}(g_j^{(i)} \cdot x)$$

▶ For coupling constraints j = 1, ..., k, compute noisy gradient:

$$\hat{\ell}_{j,t} = \sum_{i} g_{j}^{(i)} \cdot x_{t}^{(i)} - h_{j} + Lap(\Delta/arepsilon)$$

Do gradient descent update:

$$\lambda_{t+1} = \lambda_t - \eta \cdot \hat{\ell}_t$$

• Output: time averages $\frac{1}{T} \sum_t x_t^{(i)}$ to agent *i*

Privacy guarantee

Theorem

PRIVDUDE satisfies (ε, δ) -joint differential privacy. The mechanism that releases just the dual variables λ_t satisfies (ε, δ) -standard differential privacy.

Accuracy guarantee

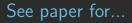
Theorem

PRIVDUDE produces a solution x such that:

- \blacktriangleright it achieves objective at least $\textit{OPT}-\alpha$;
- ▶ it satisfies all personal constraints ; and

• the total infeasibility over all coupling constraints is at most α ; where $\alpha = \tilde{O}(\sigma k \log(1/\delta)/\varepsilon)$, and σ measures the sensitivity of the convex program.

Wrapping up



Approximate truthfulness

Exact feasibility

Conclusion

Main ideas

- \blacktriangleright Equilibrium \leftrightarrow solution to convex program
- ► Joint differential privacy for separable convex programs

PrivDuDe

- Approximately solve separable convex programs
- Satisfies (joint) differential privacy
- Error/infeasibility linear in number of coupling constraints

Open problems and future directions

Expanding the class of convex programs

- Can we handle something beyond separable convex programs?
- Terms depending on at most two agents?

Improving the accuracy

- ► Is linear dependence on number of constraints k necessary?
- What is the best dependence possible?

Jointly Private Convex Programming "PRIVDUDE"

Justin Hsu¹, Zhiyi Huang², Aaron Roth¹, Steven Zhiwei Wu¹

¹University of Pennsylvania ²University of Hong Kong

January 10, 2016