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One hot summer...not enough electricity!
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Solution: Turn off air-conditioning

Decide when customers get electricity
I Divide day into time slots
I Customers have values for slots
I Customers have hard minimum requirements for slots

Goal: maximize welfare
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Scheduling optimization problem

Constants (Inputs to the problem)

I Customer i ’s value for electricity in time slot t: v (i)
t ∈ [0, 1]

I Customer i ’s minimum requirement: d (i)
t ∈ [0, 1]

I Total electricity supply in time slot t: st ∈ R

Variables (Outputs)

I Electricity level for user i , time t: x (i)
t
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Scheduling optimization problem
Maximize welfare

max
∑
i ,t

v (i)
t · x

(i)
t

...subject to constraints

I Don’t exceed power supply:∑
i
x (i)

t ≤ st

I Meet minimum energy requirements:

x (i)
t ≥ d (i)

t
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Privacy concerns

Private data
I Values v (i)

t for time slots
I Customer requirements d (i)

t

Customers shouldn’t learn private data of others
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More generally...

Convex program
I Want to maximize:∑

i
f (i)(x (i)) f (i) concave

I Coupling constraints:∑
i
g (i)

j (x (i)) ≤ hj g (i)
j convex

I Personal constraints:

x (i) ∈ S(i) S(i) convex
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More generally...

Key feature: separable
I Partition variables: Agent i ’s “part” of solution is x (i)

Agent i ’s private data affects:
I Objective f (i)

I Coupling constraints g (i)
j

I Personal constraints S(i)

Examples
I Matching LP
I d-demand fractional allocation
I Multidimensional fractional knapsack
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Our results, in one slide

Theorem
Let ε > 0 be a privacy parameter. For a separable convex program
with k coupling constraints, there is an efficient algorithm for
privately finding a solution with objective at least

OPT−O
(k
ε

)
,

and exceeding constraints by at most k/ε in total.

No polynomial dependence on number of variables
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The plan today

I Convex program solution ↔ equilibrium of a game
I Compute equilibrium via gradient descent
I Ensure privacy
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The convex program game
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The convex program two-player, zero-sum game

The players
I Primal player: plays candidate solutions x ∈ S(1) × · · · × S(n)

I Dual player: plays dual solutions λ

The payoff function
I Move constraints depending on multiple players (coupling

constraints) into objective as penalty terms

L(x , λ) =
∑

i
f (i)(x (i)) +

∑
j
λj

(∑
i
g (i)

j (x (i))− hj

)

I Primal player maximizes, dual player minimizes
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Idea: Solution ↔ equilibrium

Convex duality
I Optimal solution x∗ gets payoff OPT versus any λ
I Optimal dual λ∗ gets payoff at least −OPT versus any x

In game theoretic terms...
I The value of the game is OPT
I Optimal primal-dual solution (x∗, λ∗) is an equilibrium

Find an equilibrium to find an optimal solution

approximate approximately
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Finding the equilibrium

Simulated play via gradient descent
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Known: techniques for finding equilibrium [FS96]

Simulated play
I First player chooses the action xt with best payoff
I Second player uses a no-regret algorithm to select action λt
I Use payoff L(xt , λt) to update the second player
I Repeat

Key features
I Average of (xt , λt) converges to approximate equilibrium
I Limited access to payoff data, can be made private
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Gradient descent dynamics (linear case)

Idea: repeatedly go “downhill”
I Given primal point x (i)

t , gradient of L(xt ,−) is

`j =
∑

i
g (i)

j · x
(i)
t − hj

I Update:
λt+1 = λt − η · `
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Achieving privacy
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(Plain) Differential privacy [DMNS06]

D 

Differential Privacy 
[Dwork-McSherry-Nissim-Smith 06] 

Algorithm 

Pr [r] 

ratio bounded 

Alice
  

Bob Chris
  

Donna Ernie Xavier 
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More formally

Definition (DMNS06)
Let M be a randomized mechanism from databases to range R, and
let D,D′ be databases differing in one record. M is
(ε, δ)-differentially private if for every S ⊆ R,

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ.

For us: too strong!
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A relaxed notion of privacy [KPRU14]

Idea
I Give separate outputs to agents
I Group of agents can’t violate privacy of other agents

Definition
An algorithmM : Cn → Ωn is (ε, δ)-joint differentially private if for
every agent i , pair of i-neighbors D,D′ ∈ Cn, and subset of outputs
S ⊆ Ωn−1,

Pr[M(D)−i ∈ S] ≤ exp(ε)Pr[M(D′)−i ∈ S] + δ.
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Achieving joint differential privacy

“Billboard” mechanisms
I Compute signal S satisfying standard differential privacy
I Agent i ’s output is a function of i ’s private data and S

Lemma (Billboard lemma [HHRRW14])
Let S : D → S be (ε, δ)-differentially private. Let agent i have
private data Di ∈ X , and let F : X × S → R. Then the mechanism

M(D)i = F (Di , S(D))

is (ε, δ)-joint differentially private.
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Our signal: noisy dual variables

Privacy for the dual player
I Recall gradient is

`j =
∑

i
g (i)

j · x
(i)
t − hj

I May depend on private data in a low-sensitivity way

I Use Laplace mechanism to add noise, “noisy gradient”:

ˆ̀j =
∑

i
g (i)

j · x
(i)
t − hj + Lap(∆/ε)

I Noisy gradients satisfy standard differential privacy
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Private action: best response to dual variables

(Joint) privacy for the primal player

I Best response problem:

max
x∈S
L(x , λt) = max

x∈S

∑
i
f (i) ·x (i)+

∑
j
λj,t

(∑
i
g (i)

j · x
(i) − hj

)

I Can optimize separately:

max
x (i)∈S(i)

f (i) · x (i) +
∑

j
λj,t

(
g (i)

j · x (i)
)

I Key point: optimization for x (i) depends only on λ and
functions of i ’s private data (S(i), f (i), g (i))
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The algorithm: PrivDuDe

I For iterations t = 1, . . . ,T :

I For i = 1, . . . , n, compute best response:

x (i)
t = max

x∈S(i)
f (i) · x −

∑
j
λj,t(g (i)

j · x)

I For coupling constraints j = 1, . . . , k, compute noisy gradient:

ˆ̀j,t =
∑

i
g (i)

j · x
(i)
t − hj + Lap(∆/ε)

I Do gradient descent update:

λt+1 = λt − η · ˆ̀t

I Output: time averages 1
T
∑

t x
(i)
t to agent i
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Privacy guarantee

Theorem
PrivDuDe satisfies (ε, δ)-joint differential privacy. The mechanism
that releases just the dual variables λt satisfies (ε, δ)-standard
differential privacy.
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Accuracy guarantee

Theorem
PrivDuDe produces a solution x such that:

I it achieves objective at least OPT− α ;
I it satisfies all personal constraints ; and
I the total infeasibility over all coupling constraints is at most α ;

where α = Õ(σk log(1/δ)/ε), and σ measures the sensitivity of the
convex program.
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Wrapping up
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See paper for...

Approximate truthfulness

Exact feasibility
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Conclusion

Main ideas
I Equilibrium ↔ solution to convex program
I Joint differential privacy for separable convex programs

PrivDuDe
I Approximately solve separable convex programs
I Satisfies (joint) differential privacy
I Error/infeasibility linear in number of coupling constraints
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Open problems and future directions

Expanding the class of convex programs
I Can we handle something beyond separable convex programs?
I Terms depending on at most two agents?

Improving the accuracy
I Is linear dependence on number of constraints k necessary?
I What is the best dependence possible?
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