Coupling Proofs Are Probabilistic Product Programs

Gilles Barthe, Benjmain Grégoire, Justin Hsu*, Pierre-Yves Strub

IMDEA Software, Inria, University of Pennsylvania*, École Polytechnique
January 18, 2017

A simple card-flipping process

Setup

- Input: position in $\{1, \ldots, 9\}$
- Repeat:
- Draw uniformly random card $\in\{1, \ldots, 9\}$
- Go forward that many steps
- Output last position before crossing 100

In pictures
∇
3
$\square$$\square \square \cdots \square \square$

In pictures
$3 \square \square$

In pictures

∇_{∇}
 $3 \square \square 15 \cdots \square$

In pictures

$$
3 \square \square 5 \square \cdots 4 \square
$$

In pictures

$$
3 \square \square 5 \square \cdots 4 \square
$$

Output last position: 99

Starting at a different position

$$
\square{\underset{\Delta}{1} \square \square \square \square \cdots \square \square \square}_{\square}^{\square} \square \square \square
$$

Starting at a different position

$$
\square 12 \square \square \square \cdots \square \square
$$

Starting at a different position

Starting at a different position

$$
\begin{array}{ll}
1 & 2 \\
\hline
\end{array} \quad \cdots \infty
$$

Starting at a different position

$\square 12 \square 9 \square \cdots \square 8$

How close are the two output distributions?

Combine first process and second process

∇ \triangle

Combine first process and second process

$$
3 \prod_{\Delta}^{\nabla} \square \square \square \square \cdots \square \square
$$

Combine first process and second process

0

 \triangle

Combine first process and second process

0
 31 — — - $\because \because \square$
 \triangle

Combine first process and second process

\square
 $31 \square \square \square \square \square$

Combine first process and second process

Combine first process and second process

Combine first process and second process

Combine first process and second process

$\stackrel{\rightharpoonup}{\circ}$ $\begin{array}{llllllllll}3 & 1 & 2 & 1 & \square\end{array}$

Combine first process and second process

Combine first process and second process

${ }^{\circ}$ $\left.\begin{array}{lllllllllll}3 & 1 & 2 & 1 & 1 & \square\end{array}\right]$

Combine first process and second process

$$
\begin{array}{l|llllllll}
3 & 1 & 2 & 1 & 1 & 7 & \cdots
\end{array}
$$

Combine first process and second process

$$
\begin{array}{l|llllllll}
3 & 1 & 2 & 1 & 1 & 7 & \cdots & 4
\end{array}
$$

Combine first process and second process

Product program: One program simulating two programs

Why is this interesting?

In general

Property P of product program

 \DownarrowProperty P^{\prime} of two programs

Our construction

Two simulated programs can share randomness

Distance between output distributions

Distance between output distributions

3 1 2 1 17 $7 \cdots 4$

Distance between output distributions

Probability that outputs differ

Today:

3 1 2 1 1 7 •••4

Probability that outputs differ

A probabilistic product construction with shared randomness

A probabilistic program logic \times pRHL: a proof-relevant version of pRHL

A crash course: Probabilistic Relational Hoare Logic [BGZ-B]

Imperative language

$$
c::=x \leftarrow e|c ; c| \text { if } e \text { then } c \text { else } c \mid \text { while } e \text { do } c
$$

Imperative language

$$
c::=x \leftarrow e|c ; c| \text { if } e \text { then } c \text { else } c \mid \text { while } e \text { do } c \mid x \notin \mathbb{S}[S]
$$

Uniform sampling from finite set $[S]$

- coin flip: [heads, tails]
- random card: [1, ..., 9]

Imperative language

$$
c::=x \leftarrow e|c ; c| \text { if } e \text { then } c \text { else } c \mid \text { while } e \text { do } c \mid x \leftrightarrow \mathbb{S}[S]
$$

Uniform sampling from finite set $[S]$

- coin flip: [heads, tails]
- random card: [1, ..., 9]

Command semantics $\llbracket c \rrbracket$

- Input: memory
- Output: distribution over memories

Judgments: similar to Hoare logic

$$
\{P\} c\{Q\}
$$

Judgments: similar to Hoare logic

$$
\{P\} \subset\{Q\}
$$

Assertions: binary relation on memories

- Can refer to tagged program variables: $x\langle 1\rangle$ and $x\langle 2\rangle$
- First order formulas, non-probabilistic

Judgments: similar to Hoare logic

$$
\{P\} c\{Q\}
$$

Assertions: binary relation on memories

- Can refer to tagged program variables: $x\langle 1\rangle$ and $x\langle 2\rangle$
- First order formulas, non-probabilistic

If the two inputs satisfy P, we can share the randomness on two runs of c so that the two outputs satisfy Q.

Proof rules in pRHL: mostly similar to Hoare logic

$$
\begin{aligned}
& \text { Assn } \frac{f: S \rightarrow S \text { bijection }}{\{Q\{e\langle 1\rangle, e\langle 2\rangle / x\langle 1\rangle, x\langle 2\rangle\}\} x \leftarrow e\{Q\}} \quad \text { Rand } \frac{f\left(S \in S, Q\left\{x_{1}\langle 1\rangle, x_{2}\langle 2\rangle / v, f(v)\right\}\right\} x \notin[Q\}}{\{\forall v} \\
& \vDash P \Longrightarrow e\langle 1\rangle=e\langle 2\rangle \\
& \operatorname{SeQ} \frac{\{P\} c\{Q\} \quad\{Q\} c^{\prime}\{R\}}{\{P\} c ; c^{\prime}\{R\}} \quad \text { Cond } \frac{\{P \wedge e\langle 1\rangle\} c\{Q\} \quad\{P \wedge \neg e\langle 1\rangle\} c^{\prime}\{Q\}}{\{P\} \text { if } e \text { then } c \text { else } c^{\prime}\{Q\}} \quad \text { Loop } \frac{\{P \wedge e\langle 1\rangle \wedge e\langle 2\rangle\} c\{P \wedge e\langle 1\rangle=e\langle 2\rangle\}}{\{P \wedge e\langle 1\rangle=e\langle 2\rangle\} \text { while } e \text { do } c\{P \wedge \neg e\langle 1\rangle \wedge \neg e\langle 2\rangle\}} \\
& \operatorname{Conseq} \frac{\{P\} c\{Q\} \quad \models P^{\prime} \Longrightarrow P \wedge Q \Longrightarrow Q^{\prime}}{\left\{P^{\prime}\right\} c\left\{Q^{\prime}\right\}} \quad \quad \text { CASE } \frac{\{P \wedge R\} c\{Q\} \quad\{P \wedge \neg R\} c\{Q\}}{\{P\} c\{Q\}}
\end{aligned}
$$

Proof rules in pRHL: mostly similar to Hoare logic

$$
\begin{aligned}
& \text { Assn } \overline{\{Q\{(1), Q(2) /\{1), ~ R a n d ~} \quad \text { Rijection } \\
& \overline{\{Q\{e\langle 1\rangle, e\langle 2\rangle / x\langle 1\rangle, x\langle 2\rangle\}\} x \leftarrow e\{Q\}} \\
& \left\{\forall v \in S, Q\left\{x_{1}\langle 1\rangle, x_{2}\langle 2\rangle / v, f(v)\right\}\right\} x \in[S]\{Q\} \\
& \vDash P \Longrightarrow e\langle 1\rangle=e\langle 2\rangle \\
& \operatorname{SEQ} \frac{\{P\} c\{Q\} \quad\{Q\} c^{\prime}\{R\}}{\{P\} c ; c^{\prime}\{R\}} \quad \text { Cond } \frac{\{P \wedge e\langle 1\rangle\} c\{Q\} \quad\{P \wedge \neg e\langle 1\rangle\} c^{\prime}\{Q\}}{\{P\} \text { if } e \text { then } c \text { else } c^{\prime}\{Q\}} \quad \text { Loop } \frac{\{P \wedge e\langle 1\rangle \wedge e\langle 2\rangle\} c\{P \wedge e\langle 1\rangle=e\langle 2\rangle\}}{\{P \wedge e\langle 1\rangle=e\langle 2\rangle\} \text { while } e \text { do } c\{P \wedge \neg e\langle 1\rangle \wedge \neg e\langle 2\rangle\}} \\
& \operatorname{ConseQ} \frac{\{P\} c\{Q\} \quad \models P^{\prime} \Longrightarrow P \wedge Q \Longrightarrow Q^{\prime}}{\left\{P^{\prime}\right\} c\left\{Q^{\prime}\right\}} \quad \quad \text { CASE } \frac{\{P \wedge R\} c\{Q\} \quad\{P \wedge \neg R\} c\{Q\}}{\{P\} c\{Q\}}
\end{aligned}
$$

Proof rules in pRHL: Random sampling

$$
\frac{f: S \rightarrow S \text { bijection }}{\{\top\} x \&[S]\{x\langle 2\rangle=f(x\langle 1\rangle)\}}
$$

Proof rules in pRHL: Random sampling

$$
\frac{f: S \rightarrow S \text { bijection }}{\{T\} x \&[S]\{x\langle 2\rangle=f(x\langle 1\rangle)\}}
$$

Select how to share randomness

Introducing $\times \mathrm{pRHL}$

Idea: Product program c^{\times}simulates two processes

$$
\{P\} c\{Q\}
$$

Idea: Product program c^{\star} simulates two processes

$$
\{P\} c\{Q\} \leadsto c^{x}
$$

Idea: Product program c^{\times}simulates two processes

$$
\{P\} c\{Q\} \leadsto c^{x}
$$

Runs in combined memory

- Two separate copies of single memory
- Duplicate program variables: $x\langle 1\rangle$ and $x\langle 2\rangle$

Idea: Product program c^{\star} simulates two processes

$$
\{P\} \subset\{Q\} \rightsquigarrow c^{x}
$$

Runs in combined memory

- Two separate copies of single memory
- Duplicate program variables: $x\langle 1\rangle$ and $x\langle 2\rangle$

Property of $c^{\star} \Longrightarrow$ property of two runs of c

A tour of \times pRHL rules: [Seq]
In pRHL:

$$
\frac{\{P\} c\{Q\} \quad\{Q\} c^{\prime}\{R\}}{\{P\} c ; c^{\prime}\{R\}}
$$

A tour of \times pRHL rules: [Seq]
In $\times \mathrm{pRHL}$:

$$
\frac{\{P\} c\{Q\} \rightsquigarrow c^{\times} \quad\{Q\} c^{\prime}\{R\} \rightsquigarrow c^{\times^{\prime}}}{\{P\} c ; c^{\prime}\{R\} \rightsquigarrow c^{\times} ; c^{\times^{\prime}}}
$$

A tour of \times pRHL rules: [Seq]
In $\times \mathrm{pRHL}$:

$$
\frac{\{P\} c\{Q\} \rightsquigarrow c^{\times} \quad\{Q\} c^{\prime}\{R\} \rightsquigarrow c^{\times^{\prime}}}{\{P\} c ; c^{\prime}\{R\} \rightsquigarrow c^{\times} ; c^{\times^{\prime}}}
$$

Sequence product programs

A tour of \times pRHL proof rules: [Rand]

In pRHL:
$f: S \rightarrow S$ bijection
$\overline{\{\top\}} x \&[S]\{x\langle 2\rangle=f(x\langle 1\rangle)\}$

A tour of \times pRHL proof rules: [Rand]

In $\times \mathrm{pRHL}$:

$f: S \rightarrow S$ bijection

$$
\{T\} x \curvearrowright[S]\{x\langle 2\rangle=f(x\langle 1\rangle)\} \rightsquigarrow x\langle 1\rangle \Leftarrow[S] ; x\langle 2\rangle \leftarrow f(x\langle 1\rangle)
$$

A tour of \times pRHL proof rules: [Rand]

In $\times \mathrm{pRHL}$:

$$
f: S \rightarrow S \text { bijection }
$$

$$
\overline{\{T\} x \curvearrowright}[S]\{x\langle 2\rangle=f(x\langle 1\rangle)\} \rightsquigarrow x\langle 1\rangle \Leftarrow[S] ; x\langle 2\rangle \leftarrow f(x\langle 1\rangle)
$$

Sample $x\langle 2\rangle$ depends on $x\langle 1\rangle$

A tour of \times pRHL rules: [Case]

In pRHL:

$$
\frac{\{P \wedge Q\} c\{R\}}{\{P\} c\{R\}}
$$

A tour of \times pRHL rules: [Case]

In \times pRHL:

$$
\frac{\{P \wedge Q\} c\{R\} \rightsquigarrow c^{\times} \quad\{P \wedge \neg Q\} c\{R\} \rightsquigarrow c_{\urcorner}^{\rtimes}}{\{P\} c\{R\} \rightsquigarrow \text { if } Q \text { then } c^{\times} \text {else } c_{\urcorner}^{\times}}
$$

A tour of $\times \mathrm{pRHL}$ rules: [Case]

In $\times \mathrm{pRHL}$:

$$
\frac{\{P \wedge Q\} c\{R\} \rightsquigarrow c^{\times} \quad\{P \wedge \neg Q\} c\{R\} \rightsquigarrow c_{\urcorner}^{\rtimes}}{\{P\} c\{R\} \rightsquigarrow \text { if } Q \text { then } c^{\times} \text {else } c_{\urcorner}^{\rtimes}}
$$

Case in proof \rightsquigarrow conditional in product

See the paper for ...

Verifying rapid mixing for Markov chains

- Examples from statistical physics
- A cool card trick

Advanced proof rules

- Asynchronous loop rule

Soundness

Our technical contributions

A probabilistic product construction with shared randomness

A probabilistic program logic \times pRHL: a proof-relevant version of pRHL

Proof by coupling

A proof technique from probability theory

- Given: two processes
- Specify: how to coordinate random samplings
- Analyze: properties of linked/coupled processes

Attractive features

- Compositional
- Reason about relation between samples, not probabilities
- Reduce properties of two programs to properties of one program

Coupling proofs \approx pRHL proofs

Coupling proofs \approx pRHL proofs

describe

Two coupled processes

Coupling proofs \approx pRHL proofs
 describe
 encode

Two coupled processes

Coupling proofs \approx pRHL proofs describe processes
\approx Probabilistic product programs

Probabilistic product programs are the computational content of coupling proofs

