Paper Suggestions
Differential Privacy
Frank McSherry and Kunal Talwar.
Mechanism Design via Differential Privacy .
FOCS 2007.
Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy Rothblum.
Differential Privacy under Continual Observation .
STOC 2010.
T.-H. Hubert Chan, Elaine Shi, and Dawn Song.
Private and Continual Release of Statistics .
ICALP 2010.
Moritz Hardt, Katrina Ligett, and Frank McSherry.
A Simple and Practical Algorithm for Differentially Private Data Release .
NIPS 2012.
Daniel Kifer and Ashwin Machanavajjhala.
A Rigorous and Customizable Framework for Privacy .
PODS 2012.
Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova.
RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response .
CCS 2014.
Cynthia Dwork, Moni Naor, Omer Reingold, and Guy N. Rothblum.
Pure Differential Privacy for Rectangle Queries via Private Partitions .
ASIACRYPT 2015.
Matthew Joseph, Aaron Roth, Jonathan Ullman, and Bo Waggoner.
Local Differential Privacy for Evolving Data .
Applied Cryptography
Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, Andrew J. Blumberg, and Michael Walfish.
Verifying Computations with State .
SOSP 2013.
Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova.
Pinocchio: Nearly Practical Verifiable Computation .
S&P 2013.
Aseem Rastogi, Matthew A. Hammer and Michael Hicks.
Wysteria: A Programming Language for Generic, Mixed-Mode Multiparty Computations .
S&P 2014.
Shai Halevi and Victor Shoup.
Algorithms in HElib .
CRYPTO 2014.
Shai Halevi and Victor Shoup.
Bootstrapping for HElib .
EUROCRYPT 2015.
Léo Ducas and Daniele Micciancio.
FHEW: Bootstrapping Homomorphic Encryption in Less than a Second .
EUROCRYPT 2015.
Peter Kairouz, Sewoong Oh, and Pramod Viswanath.
Secure Multi-party Differential Privacy .
NIPS 2015.
Arjun Narayan, Ariel Feldman, Antonis Papadimitriou, and Andreas Haeberlen.
Verifiable Differential Privacy .
EUROSYS 2015.
Language-Based Security
Martín Abadi and Andrew D. Gordon.
A Calculus for Cryptographic Protocols: The Spi Calculus .
Information and Computation, 1999.
Frank McSherry.
Privacy Integrated Queries .
SIGMOD 2009.
Jason Reed and Benjamin C. Pierce.
Distance Makes the Types Grow Stronger: A Calculus for Differential Privacy .
ICFP 2010.
Daniel B. Griffin, Amit Levy, Deian Stefan, David Terei, David Mazières, John C. Mitchell, and Alejandro Russo.
Hails: Protecting Data Privacy in Untrusted Web Applications .
OSDI 2012.
Danfeng Zhang, Aslan Askarov, and Andrew C. Myers.
Language-Based Control and Mitigation of Timing Channels .
PLDI 2012.
Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi.
Authenticated Data Structures, Generically .
POPL 2014.
Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and Pierre-Yves Strub.
Higher-Order Approximate Relational Refinement Types for Mechanism Design and Differential Privacy .
POPL 2015.
Samee Zahur and David Evans.
Obliv-C: A Language for Extensible Data-Oblivious Computation .
IACR 2015.
Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi.
ObliVM: A Programming Framework for Secure Computation .
S&P 2015.
Andrew Ferraiuolo, Rui Xu, Danfeng Zhang, Andrew C. Myers, and G. Edward Suh.
Verification of a Practical Hardware Security Architecture Through Static Information Flow Analysis .
ASPLOS 2017.
Adversarial Machine Learning
Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing Properties of Neural Networks .
ICLR 2014.
Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and Harnessing Adversarial Examples .
ICLR 2015.
Nicholas Carlini and David Wagner.
Towards Evaluating the Robustness of Neural Networks .
S&P 2017.
Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song.
Robust Physical-World Attacks on Deep Learning Models .
CVPR 2018.
Nicholas Carlini and David Wagner.
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods .
AISec 2017.
Jacob Steinhardt, Pang Wei Koh, and Percy Liang.
Certified Defenses for Data Poisoning Attacks .
NIPS 2017.
Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards Deep Learning Models Resistant to Adversarial Attacks .
ICLR 2018.
Supplemental Material