LAMBDA CALCULUS BASICS
SOME TERMINOLOGY

- You may see several different names:
 - Programs
 - Expressions
 - Terms
- For lambda calculus, these all mean the same thing
“RUNNING” A LAMBDA EXPRESSION

- Given a lambda calculus program, how to run it?
 1. Figure out where parentheses go
 2. Substitute fn argument into fn body
 3. Repeat until we reach a value
1. FIGURE OUT WHERE PARENTHESES GO

- Function application is *left-associative*
- Example: $e_1 \ e_2 \ e_3$ means $(e_1 \ e_2) \ e_3$
 - Read: call e_1 with e_2, then with e_3
- Not the same: $e_1 \ (e_2 \ e_3)$
 - Read: call e_2 with e_3, then call e_1
2. SUBSTITUTE ARGUMENT INTO BODY

- Example: $(\lambda x. e) \, v$ where v is a value
- Replace all* x’s in e with v, remove λx.
 - Read: call function with argument v
- Example: $(\lambda x. x + 1) \, 5$
 - Replace x with 5, remove λx.
 - Result: $5 + 1$, steps to 6
3. KEEP SUBSTITUTING UNTIL DONE

1. Order: outside-to-inside
2. Operate on left-most term until it is $\lambda x. e$
3. Turn to argument (right-most term)
 - If eager evaluation, operate on argument
 - If lazy evaluation, substitute argument into e
4. Never substitute “under” lambdas
 - Don’t substitute for $y: \lambda x. ((\lambda y. e_1) \ x)$
LET'S DO AN EXAMPLE

- Start: \(((\lambda a. a) \lambda b. \lambda c. \lambda d. d \ b \ c) \ 1 \ 2 \ \lambda x. \lambda y. x + y\)
- $$= (((((\lambda a. a) \lambda b. \lambda c. \lambda d. (d \ b) \ c) \ 1) \ 2) \ (\lambda x. \lambda y. x + y)$$
- $$\rightarrow (((\lambda b. \lambda c. \lambda d. (d \ b) \ c) \ 1) \ 2) \ (\lambda x. \lambda y. x + y)$$
- $$\rightarrow ((\lambda c. \lambda d. (d \ 1) \ c) \ 2) \ (\lambda x. \lambda y. x + y)$$
- $$\rightarrow (\lambda d. (d \ 1) \ 2) \ (\lambda x. \lambda y. x + y)$$
- $$\rightarrow ((\lambda x. \lambda y. x + y) \ 1) \ 2$$
- $$\rightarrow (\lambda y. 1 + y) \ 2$$
- $$\rightarrow 1 + 2 \rightarrow 3$$
FREE VERSUS BOUND VARIABLES

- Free variable: introduced by outer λ
- Bound variable: not introduced by outer λ
- Example: $z \lambda x. z + x$
 - x is a bound variable (under λx)
 - z is a free variable (not under λz)
- When substituting, only replace bound variable
- Example: $(\lambda x. (\lambda x. x + 1))$ 5 steps to $\lambda x. x + 1$
 - Inner x bound by the inner λx, not the outer one
SPECIFYING PROGRAM BEHAVIORS
HELP COMPILER WRITERS

• For real languages: multiple implementations
 ▪ C/C++: gcc, clang, icc, compcert, vc++, ...
 ▪ Python: CPython, Jython, PyPy, ...
 ▪ Ruby: YARV, JRuby, TruffleRuby, Rubinius, ...
• Should agree on what programs are supposed to do!
DESIGN OPTIMIZATIONS

- Compilers use optimizations to speed up code
 - Loops: fission and fusion, unrolling, unswitching
 - Common subexpression, dead code elimination
 - Inlining and hoisting
 - Strength reduction
 - Vectorization
 - ...
- Optimizations shouldn’t affect program behavior!
Before we can prove anything about programs, we first need to formalize what programs do.

Example: equivalence
- Which programs are equivalent?
- Which programs aren’t equivalent?
PROGRAM SEMANTICS

• Ideal goal: describe programs mathematically
 ▪ Aiming for a fully precise definition
• But: no mathematical model is perfect
 ▪ Programs run on physical machines in real life
• Challenge: which aspects should we model?
MANY APPROACHES

- Denotational semantics
 - Translate programs to mathematical functions
- Axiomatic semantics
 - Analyze pre-/post-conditions of programs
- Operational semantics
 - Model how programs step

Principle: program behavior should be defined by behavior of its components
OPERATIONAL SEMANTICS
PROGRAMS MAKE STEPS

- Model how a program is evaluated
- Benefits:
 - Closer correspondence with implementation
 - General: most programs “step”, in some sense
- Drawbacks:
 - A lot of details, models all the steps
 - Overkill if we just care about input/output
VALUES AND EXPRESSIONS

- Programs may or may not be able to step
- Can step: *redexes* (reducible expressions)
- Can’t step:
 - *Values*: valid results
 - *Stuck terms*: invalid results (“runtime errors”)

IN LAMBDA CALCULUS

- Values: these things do not step, they are done
 \[
 \text{val} = \mathbb{B} \mid \mathbb{Z} \mid \text{var} \mid \lambda \text{var} . \text{expr}
 \]

- Expressions: these things may step
 \[
 \text{expr} = \mathbb{B} \mid \mathbb{Z} \\
 \quad \mid \lambda \text{var} . \text{expr} \mid \text{expr} \text{ expr} \\
 \quad \mid \text{add(}\text{expr}, \text{expr}\text{)} \mid \text{sub(}\text{expr}, \text{expr}\text{)} \\
 \quad \mid \text{and(}\text{expr}, \text{expr}\text{)} \mid \text{or(}\text{expr}, \text{expr}\text{)} \\
 \quad \mid \text{if} \text{ expr then expr else expr} \mid \ldots
 \]

- Stuck terms: not values, but can’t step (error)
 - \text{true} 1
 - 1 + \text{false}
HOW TO DEFINE OPERATIONAL SEMANTICS?
WANT TO DEFINE NEW RELATIONS

- $R(e, v)$: “Program e steps to value v”
- $S(e, e')$: “Program e steps to program e'”
- As PL designer: we get to define R and S
 - But what does a definition look like?
INFERENC RULES

• Basic idea: we write down a set of inference rules
• Components of a rule
 ▪ Above the line: zero-or-more assumptions
 ▪ Below the line: one conclusion
• Meaning of a rule
 ▪ If top thing(s) hold, then bottom thing holds
 ▪ If no top things: bottom thing holds
EXAMPLE: ISDOUBLE
BIG-STEP SEMANTICS
IDEA: DESCRIBE PROGRAM RESULT

- Useful for language specifications
- Don’t describe intermediate steps
- Write $e \downarrow v$ if program e evaluates to value v

Language designer defines when $e \downarrow v$
EXAMPLE
HOW TO APPLY FUNCTIONS?

- Eager evaluation
 - If $e_1 \Downarrow \lambda x.e'_1$, and
 - If $e_2 \Downarrow v$, and
 - If $e'_1[x \mapsto v] \Downarrow v'$, and
 - Then: $e_1 \; e_2 \Downarrow v'$
HOW TO APPLY FUNCTIONS?

- Lazy evaluation
 - If $e_1 \Downarrow \lambda x.e'_1$, and
 - If $e'_1[x \mapsto e_2] \Downarrow v$,
 - Then: $e_1 \ e_2 \Downarrow v$
IN HASKELL?

• Recall tuple and non-terminating functions:

```haskell
fst (x, y) = x
snd (x, y) = y

loopForever x = loopForever x -- never terminates
```

• What if we try to project from a bad tuple?

```haskell
badFst = fst (loopForever 42, 0) + 1 -- Never returns
badSnd = snd (loopForever 42, 0) + 1 -- Returns 1!
```
EAGER EVALUATION

- When passing arguments to function, first evaluate argument all the way
- Also known as *call-by-value (CBV)*
- If argument doesn’t terminate, then function call doesn’t terminate

```plaintext
badFst = fst (loopForever 42, 0) + 1 -- Never returns under CBV
badSnd = snd (loopForever 42, 0) + 1 -- Never returns under CBV
```
LAZY EVALUATION

- Only evaluate arguments when they are needed
- Also known as call-by-name (CBN)
- This is Haskell’s evaluation order

```haskell
badFst = fst (loopForever 42, 0) + 1 -- Never returns under CBN
badSnd = snd (loopForever 42, 0) + 1 -- Returns 0 under CBN
```
Can write various kinds of infinite data
Values are computed *lazily*: only when needed

```haskell
lotsOfOnes :: [Int]
lotsOfOnes = 1 : lotsOfOnes -- [1, 1, ...]

firstOne   = head lotsOfOnes -- Returns 1

onesAndTwos :: [Int]  -- [1, 2, 1, 2, ...]
oneAndTwos = x where x = 1 : y
                   y = 2 : x

firstTwo = head tail onesAndTwos -- Returns 2

fibonacci :: [Int]  -- [1, 1, 2, 3, ...]
fibonacci = 1 : 1 : zipWith (+) fibonacci (tail fibonacci)
```
SMALL-STEP SEMANTICS
IDEA: DESCRIBE PROGRAM STEPS

- More fine-grained, helpful for implementation
- If e steps to e' in one step, write: e → e'
- If e steps to e' in zero or more steps: e →∗ e'
EXAMPLE
RECURSION
FIXED POINT OPERATION

- Idea: special expression for recursive definitions
- Should allow definition to “make recursive call”
- *Fixed point expression*: defined in terms of itself

```plaintext
expr = ... | fix var . expr
```
HOW DOES THIS EVALUATE?

- In `fix f. e`:
 - The variable `f` represents recursive call
 - The body `e` can make recursive calls via `f`
- Small-step:

 \[
 \text{fix } f. \ e \rightarrow e[f \mapsto \text{fix } f. \ e]
 \]

- Big-step:
 - If \(e[f \mapsto \text{fix } f. \ e] \downarrow v \),
 - Then: `fix f. e` \(\downarrow v \)
Suppose: want to model factorial function:

```what
factorial 0 = 1
factorial n = n * factorial (n - 1)
```

We can model as the following expression:

```what
factorial = fix f. \( \lambda n \). if n = 0 then 1 else n * (f (n - 1))
```
TESTING IT OUT

• Evaluating factorial 5:
 ▪ \(\rightarrow [\lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \ast ((\text{fix } f...) \ (n - 1)) \)
 ▪ \(\rightarrow \text{if } 5 = 0 \text{ then } 1 \text{ else } 5 \ast ((\text{fix } f...) \ (5 - 1)) \)
 ▪ \(\rightarrow^* 5 \ast ((\text{fix } f...) \ 4) \)
 ▪ ...
 ▪ \(\rightarrow^* 5 \ast 4 \ast 3 \ast 2 \ast (\text{if } 0 = 0 \text{ then } 1 \text{ else } ...) \)
 ▪ \(\rightarrow 5 \ast 4 \ast 3 \ast 2 \ast 1 \rightarrow^* 120 \)