LECTURE 07

Theory and Design of PL (CS 538)
February 12, 2020
MODELING DATATYPES
GENERAL PATTERN

1. Add a new type
2. Add constructor expressions
3. Add destructor expressions
4. Add typing rules for new expressions
5. Add evaluation rules for new expressions
EXAMPLE: PRODUCTS
INTRODUCING PRODUCTS

- Given types t_1 and t_2, product type $t_1 \times t_2$
- Can extend to triples: $t_1 \times (t_2 \times t_3)$, etc.
 - Often write just $t_1 \times t_2 \times t_3$
- Constructor
 - Pairing: from terms e_1 and e_2, form (e_1, e_2)
DESTRUCTORS: PROJECTIONS

• Given a pair term e, can project out terms:
 ▪ First element: $p_1(e)$
 ▪ Second element: $p_2(e)$
TYPING/EVALUATION RULES
EXAMPLE: SUM TYPES
INTRODUCING SUMS

• Given types t_1 and t_2, sum type $t_1 + t_2$
• Can extend to triples: $t_1 + (t_2 + t_3)$, etc.
 ▪ Often write just $t_1 + t_2 + t_3$
• Constructors
 ▪ Left injection: from term e_1, form $\text{inl}(e_1)$
 ▪ Right injection: from term e_2, form $\text{inr}(e_2)$
DESTRUCTORS: CASE

- Given a sum term \(e \), add case analysis expression:

\[
\text{case}(e) \text{ of } \text{inl}(x_1) \rightarrow e_1 \mid \text{inr}(x_2) \rightarrow e_2
\]

- “If \(e \) is left option, do \(e_1 \). If \(e \) is right option, do \(e_2 \).”
- Branch \(e_1 \) can use variable \(x_1 \), branch \(e_2 \) can use \(x_2 \)
TYPING/EVALUATION RULES
EXAMPLE: LIST TYPES
INTRODUCING LISTS

• Given type \(t \), have type \(\text{List}(t) \) of lists of \(t \)

• Constructors
 ■ Empty: (from nothing) form expression \(\text{Nil} \)
 ■ Cons: from term \(e \) and tail \(e' \), form \(\text{Cons}(e, e') \)
CONSUMING LISTS

- Very much like sums
- Given a list term e, add case analysis expression:

 \[
 \text{case}(e) \text{ of } \text{Nil} \rightarrow e_1 \mid \text{Cons}(x, xs) \rightarrow e_2
 \]

- “If e is empty, do \(e_1\). If e is not empty, do \(e_2\).”
- Branch \(e_2\) can use variables \(x\) and \(xs\)
TYPING/EVALUATION RULES
PARAMETRIC FUNCTIONS
“FOR ALL” PARAMETERS

- We’ve already seen: types have *type variables*:

  ```
  fst :: (a, b) -> a
  Cons :: a -> [a] -> [a]
  ```

- These must work *for all* types `a`
- Concrete type inferred automatically when calling:

  ```
  fst (1, True) :: Int  -- type param `a` is `Int`
  Cons True [] :: List Bool -- type param `a` is `Bool`
  ```
MUST BEHAVE UNIFORMLY

- Function behavior can’t depend on particular type!
 - No “peeking” at what type a is
 - Not allowed: if a is Bool then ... if a is Int then ...
- Also called polymorphism in type theory
 - Note: not the same as OO “polymorphism”
WHY IS THIS GOOD?

• Polymorphism constrains what a function can do
• More constraints:
 ▪ More annoying
 ▪ Fewer wrong implementations
• Sometimes, only one function is possible
FREE THEOREMS

What does our mystery function do?

- Polymorphism: must work the same way for all \(a \)
- Can prove: it can only be the identity function
 - (Ignoring non-termination...)

\[
mystery1 :: a \to a
\]

\[
mystery1 \ x = \ x
\]
FREE THEOREMS

• What does our mystery function do?

\[\text{mystery2} :: (a, a) \rightarrow a \]

• Can prove: either always returns first, or second

\[\text{mystery2} (x, y) = x -- \text{Possibility 1} \]
\[\text{mystery2} (x, y) = y -- \text{Possibility 2} \]
FREE THEOREMS

• What does our mystery function do?

mystery3 :: List a -> Maybe a

• If output is Just x, then x must be in input list
• Index can only depend on the length of the list

x1 = mystery3 [1, 2]
x2 = mystery3 ['a', 'b']
-- (x1, x2) is either:
-- (Nothing, Nothing), (Just 1, Just 'a'), (Just 2, Just 'b')
SOMETIMES: TOO LIMITING
WHAT TYPES?

- To string
 - `toString :: a -> String`
- Equality
 - `(==) :: a -> a -> Bool`
- Ordering
 - `(<) :: a -> a -> Bool`
- These polymorphic functions must *ignore* input(s)!
“AD HOC” POLYMORPHISM

- Same function name, works on different types
- Behavior can depend on the concrete type
- Can’t work on all types, but we should be able to easily extend function to handle new types
HASKELL’S SOLUTION: TYPECLASSES
DECLARING A TYPECLASS

• Give list of associated operations (methods)
• Example: Equality typeclass:

```haskell
class Eq a where
  (==) :: a -> a -> Bool
  (/=) :: a -> a -> Bool

x == y = not (x /= y)
x /= y = not (x == y)
```

• Last two lines are default implementations
 ▪ Defining either == or /= is enough
Some typeclasses require other typeclasses
Example: Ordered type needs a notion of equality

```
class Eq a => Ord a where
  (<) :: a -> a -> Bool
  (>) :: a -> a -> Bool
  (<=) :: a -> a -> Bool
  (>=) :: a -> a -> Bool
```

Any type satisfying `Ord` needs to satisfy `Eq`
Can require multiple parent typeclasses
TYPECLASS “CONSTRAINT”

- Functions can require type variables to be instances
- Add a “constraint” before the type signature

\[
\text{elem} :: \text{Eq } a \Rightarrow a \rightarrow [a] \rightarrow \text{Bool}
\]

\[
\text{elem } x \; [] \; = \text{False}
\]

\[
\text{elem } x \; (y:ys) \; = \; (x == y) \; \text{|| elem } x \; ys
\]

-- `==` function from `Eq` typeclass

- Define functions at the right level of generality!
A TOUR OF TYPECLASSES
SHOW AND READ

• **Show**: can be converted to a string

```haskell
class Show a where
  show :: a -> String
```

• **Read**: can be converted from a string

```haskell
-- Main useful function:
readMaybe :: Read a => String -> Maybe a
```
• **Enum**: can be enumerated

```haskell
class Enum a where
toEnum :: Int -> a
fromEnum :: a -> Int
```

• **Bounded**: has max and min element

```haskell
class Bounded a where
minBound :: a
maxBound :: a
```
NUMERIC TYPECLASSSES

• Most general is **Num**: things generalizing integers

```haskell
class (Eq a, Show a) => Num a where
    (+) :: a -> a -> a
    (-) :: a -> a -> a
    (*) :: a -> a -> a
    abs :: a -> a         -- absolute value
    negate :: a -> a      -- negation
    signum :: a -> a      -- sign: +1 or -1
    fromInteger :: Integer -> a
```

• More specific typeclasses: **Integral**, **Floating**
• Numeric hierarchy for number-like things
Monoid

- Monoid is a type with:
 - A binary operation
 - An identity for the operation
- Think: lists, with list append and empty list

```
class Monoid a where
  mempty :: a  -- identity element
  mappend :: a -> a -> a  -- binary operation
```

- Lots more in Haskell’s algebraic hierarchy
MAKING NEW TYPECLASS INSTANCES
DIRECT METHOD

- Provide concrete definitions for typeclass operations
- Supply enough for minimally complete definition
- Undefined things given default implementations

```haskell
data Nat = Zero | Succ Nat

instance Ord Nat where
  Zero  <  Zero  = False
  Succ _ <  Zero  = False
  Zero  <  Succ _ = True
  Succ n <  Succ m = n < m

  Zero  <= _     = True
  Succ _ <= Zero = False
  Succ n <= Succ m = n <= m
```
REQUIRE OTHER INSTANCES

- Often: defining instances for parametrized types
- Need to require type variables satisfy some instance

```haskell
-- Custom type of pairs
data MyPair a = MkPair a a

instance Show a => Show MyPair a where
    show (MkPair x x') = "MyPair of " ++ (show x)
    ++ " and " ++ (show x')

instance Ord a => Ord MyPair a where
    (MkPair x x') < (MkPair y y') = (x < y) || (x == y && x' < y')
```
AUTOMATIC METHOD

• Often: typeclass instances are boring ("boilerplate")
 ▸ Usually clear how to define \(\text{Eq} \) typeclass, ...
• Have compiler derive default instances for you

```haskell
data Nat = Zero | Succ Nat deriving (Eq)
data Colors = Red | Green | Blue deriving (Enum, Eq, Show)
```